Some Algebraic and Geometric Aspects of Quantum Measurements
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 109-123

Voir la notice de l'article provenant de la source Math-Net.Ru

We study positive operator-valued measures by algebraic and geometric methods. We prove that positive operator-valued measures are parametrized by a Poisson manifold. Also, we show how to obtain symplectic leaves of this Poisson manifold in terms of parameters of the measures. In addition, we study the interaction of two projection-valued measures by the methods of algebraic geometry.
@article{TM_2021_313_a9,
     author = {A. S. Kocherova and I. Yu. Zhdanovskiy},
     title = {Some {Algebraic} and {Geometric} {Aspects} of {Quantum} {Measurements}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {109--123},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a9/}
}
TY  - JOUR
AU  - A. S. Kocherova
AU  - I. Yu. Zhdanovskiy
TI  - Some Algebraic and Geometric Aspects of Quantum Measurements
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 109
EP  - 123
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a9/
LA  - ru
ID  - TM_2021_313_a9
ER  - 
%0 Journal Article
%A A. S. Kocherova
%A I. Yu. Zhdanovskiy
%T Some Algebraic and Geometric Aspects of Quantum Measurements
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 109-123
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a9/
%G ru
%F TM_2021_313_a9
A. S. Kocherova; I. Yu. Zhdanovskiy. Some Algebraic and Geometric Aspects of Quantum Measurements. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 109-123. http://geodesic.mathdoc.fr/item/TM_2021_313_a9/