Disclinations in the Geometric Theory of Defects
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 87-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In the geometric theory of defects, media with a spin structure (for example, ferromagnets) are regarded as manifolds with given Riemann–Cartan geometry. We consider the case with the Euclidean metric, which corresponds to the absence of elastic deformations, but with nontrivial $\mathbb {SO}(3)$ connection, which produces nontrivial curvature and torsion tensors. We show that the 't Hooft–Polyakov monopole has a physical interpretation; namely, in solid state physics it describes media with continuous distribution of dislocations and disclinations. To describe single disclinations, we use the Chern–Simons action. We give two examples of point disclinations: a spherically symmetric point “hedgehog” disclination and a point disclination for which the $n$-field takes a fixed value at infinity and has an essential singularity at the origin. We also construct an example of linear disclinations with Frank vector divisible by $2\pi $.
@article{TM_2021_313_a8,
     author = {M. O. Katanaev},
     title = {Disclinations in the {Geometric} {Theory} of {Defects}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {87--108},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a8/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Disclinations in the Geometric Theory of Defects
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 87
EP  - 108
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a8/
LA  - ru
ID  - TM_2021_313_a8
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Disclinations in the Geometric Theory of Defects
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 87-108
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a8/
%G ru
%F TM_2021_313_a8
M. O. Katanaev. Disclinations in the Geometric Theory of Defects. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 87-108. http://geodesic.mathdoc.fr/item/TM_2021_313_a8/