Structure of a General Quantum Gaussian Observable
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 78-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A structure theorem is established which shows that an arbitrary multimode bosonic Gaussian observable can be represented as a combination of four basic cases whose physical prototypes are homodyne and heterodyne, noiseless or noisy, measurements in quantum optics. The proof establishes a connection between the descriptions of a Gaussian observable in terms of the characteristic function and in terms of the density of a probability operator-valued measure (POVM) and has remarkable parallels with the treatment of bosonic Gaussian channels in terms of their Choi–Jamiołkowski form. Along the way we give the “most economical” (in the sense of minimal dimensions of the quantum ancilla) construction of the Naimark extension of a general Gaussian observable. We also show that the Gaussian POVM has bounded operator-valued density with respect to the Lebesgue measure if and only if its noise covariance matrix is nondegenerate.
@article{TM_2021_313_a7,
     author = {A. S. Holevo},
     title = {Structure of a {General} {Quantum} {Gaussian} {Observable}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {78--86},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a7/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - Structure of a General Quantum Gaussian Observable
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 78
EP  - 86
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a7/
LA  - ru
ID  - TM_2021_313_a7
ER  - 
%0 Journal Article
%A A. S. Holevo
%T Structure of a General Quantum Gaussian Observable
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 78-86
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a7/
%G ru
%F TM_2021_313_a7
A. S. Holevo. Structure of a General Quantum Gaussian Observable. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 78-86. http://geodesic.mathdoc.fr/item/TM_2021_313_a7/

[1] Caruso F., Eisert J., Giovannetti V., Holevo A.S., “Optimal unitary dilation for bosonic Gaussian channels”, Phys. Rev. A, 84:2 (2011), 022306 ; arXiv: 1009.1108 [quant-ph] | DOI | MR

[2] Caves C.M., Drummond P.D., “Quantum limits on bosonic communication rates”, Rev. Mod. Phys., 66:2 (1994), 481–537 | DOI

[3] Giovannetti V., Holevo A.S., García-Patrón R., “A solution of Gaussian optimizer conjecture for quantum channels”, Commun. Math. Phys., 334:3 (2015), 1553–1571 ; arXiv: 1405.4066 [quant-ph] | DOI | MR | Zbl

[4] V. Giovannetti, A. S. Holevo, and A. Mari, “Majorization and additivity for multimode bosonic Gaussian channels”, Theor. Math. Phys., 182:2 (2015), 284–293 | DOI | MR | Zbl

[5] Hall M.J.W., “Information exclusion principle for complementary observables”, Phys. Rev. Lett., 74:17 (1995), 3307–3311 | DOI | MR | Zbl

[6] Hall M.J.W., “Quantum information and correlation bounds”, Phys. Rev. A, 55:1 (1997), 100–113 | DOI | Zbl

[7] A. S. Holevo, “On the mathematical theory of quantum communication channels”, Probl. Inf. Transm., 8:1 (1972), 47–54 | MR

[8] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Ed. Norm., Pisa, 2011 | MR | Zbl

[9] A. S. Holevo, “Entanglement-breaking channels in infinite dimensions”, Probl. Inf. Transm., 44:3 (2008), 171–184 | DOI | MR | Zbl

[10] Holevo A.S., “The Choi–Jamiolkowski forms of quantum Gaussian channels”, J. Math. Phys., 52:4 (2011), 042202 | DOI | MR | Zbl

[11] A. S. Holevo, “Information capacity of a quantum observable”, Probl. Inf. Transm., 48:1 (2012), 1–10 | DOI | MR | Zbl

[12] Holevo A.S., Quantum systems, channels, information: A mathematical introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[13] Holevo A.S., “Gaussian maximizers for quantum Gaussian observables and ensembles”, IEEE Trans. Inf. Theory, 66:9 (2020), 5634–5641 | DOI | MR | Zbl

[14] Holevo A.S., Kuznetsova A.A., “Information capacity of continuous variable measurement channel”, J. Phys. A: Math. Theor., 53:17 (2020), 175304 ; arXiv: 1910.05062 [quant-ph] | DOI | MR

[15] Holevo A.S., Kuznetsova A.A., “The information capacity of entanglement-assisted continuous variable quantum measurement”, J. Phys. A: Math. Theor., 53:37 (2020), 375307 ; arXiv: 2004.05331 [quant-ph] | DOI | MR

[16] Holevo A.S., Yashin V.I., “Maximum information gain of approximate quantum position measurement”, Quantum Inf. Process., 20:3 (2021), 97 ; arXiv: 2006.04383 [quant-ph] | DOI | MR

[17] A. I. Kostrikin and Yu. I. Manin, Linear Algebra and Geometry, Gordon Breach Sci. Publ., New York, 1989 | MR | Zbl

[18] Williamson J., “The exponential representation of canonical matrices”, Amer. J. Math., 61 (1939), 897–911 | DOI | MR

[19] Wolf M.M., “Not-so-normal mode decomposition”, Phys. Rev. Lett., 100:7 (2008), 070505 | DOI