Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a7, author = {A. S. Holevo}, title = {Structure of a {General} {Quantum} {Gaussian} {Observable}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {78--86}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a7/} }
A. S. Holevo. Structure of a General Quantum Gaussian Observable. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 78-86. http://geodesic.mathdoc.fr/item/TM_2021_313_a7/
[1] Caruso F., Eisert J., Giovannetti V., Holevo A.S., “Optimal unitary dilation for bosonic Gaussian channels”, Phys. Rev. A, 84:2 (2011), 022306 ; arXiv: 1009.1108 [quant-ph] | DOI | MR
[2] Caves C.M., Drummond P.D., “Quantum limits on bosonic communication rates”, Rev. Mod. Phys., 66:2 (1994), 481–537 | DOI
[3] Giovannetti V., Holevo A.S., García-Patrón R., “A solution of Gaussian optimizer conjecture for quantum channels”, Commun. Math. Phys., 334:3 (2015), 1553–1571 ; arXiv: 1405.4066 [quant-ph] | DOI | MR | Zbl
[4] V. Giovannetti, A. S. Holevo, and A. Mari, “Majorization and additivity for multimode bosonic Gaussian channels”, Theor. Math. Phys., 182:2 (2015), 284–293 | DOI | MR | Zbl
[5] Hall M.J.W., “Information exclusion principle for complementary observables”, Phys. Rev. Lett., 74:17 (1995), 3307–3311 | DOI | MR | Zbl
[6] Hall M.J.W., “Quantum information and correlation bounds”, Phys. Rev. A, 55:1 (1997), 100–113 | DOI | Zbl
[7] A. S. Holevo, “On the mathematical theory of quantum communication channels”, Probl. Inf. Transm., 8:1 (1972), 47–54 | MR
[8] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Ed. Norm., Pisa, 2011 | MR | Zbl
[9] A. S. Holevo, “Entanglement-breaking channels in infinite dimensions”, Probl. Inf. Transm., 44:3 (2008), 171–184 | DOI | MR | Zbl
[10] Holevo A.S., “The Choi–Jamiolkowski forms of quantum Gaussian channels”, J. Math. Phys., 52:4 (2011), 042202 | DOI | MR | Zbl
[11] A. S. Holevo, “Information capacity of a quantum observable”, Probl. Inf. Transm., 48:1 (2012), 1–10 | DOI | MR | Zbl
[12] Holevo A.S., Quantum systems, channels, information: A mathematical introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl
[13] Holevo A.S., “Gaussian maximizers for quantum Gaussian observables and ensembles”, IEEE Trans. Inf. Theory, 66:9 (2020), 5634–5641 | DOI | MR | Zbl
[14] Holevo A.S., Kuznetsova A.A., “Information capacity of continuous variable measurement channel”, J. Phys. A: Math. Theor., 53:17 (2020), 175304 ; arXiv: 1910.05062 [quant-ph] | DOI | MR
[15] Holevo A.S., Kuznetsova A.A., “The information capacity of entanglement-assisted continuous variable quantum measurement”, J. Phys. A: Math. Theor., 53:37 (2020), 375307 ; arXiv: 2004.05331 [quant-ph] | DOI | MR
[16] Holevo A.S., Yashin V.I., “Maximum information gain of approximate quantum position measurement”, Quantum Inf. Process., 20:3 (2021), 97 ; arXiv: 2006.04383 [quant-ph] | DOI | MR
[17] A. I. Kostrikin and Yu. I. Manin, Linear Algebra and Geometry, Gordon Breach Sci. Publ., New York, 1989 | MR | Zbl
[18] Williamson J., “The exponential representation of canonical matrices”, Amer. J. Math., 61 (1939), 897–911 | DOI | MR
[19] Wolf M.M., “Not-so-normal mode decomposition”, Phys. Rev. Lett., 100:7 (2008), 070505 | DOI