A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a time-independent Hamiltonian $\widetilde H$, one can construct a time-dependent Hamiltonian $H_t$ by means of the gauge transformation $H_t=U_t\kern 1pt \widetilde H \kern 1pt U^\dagger _t-i\kern 1pt U_t\kern 1pt\partial _t U_t^\dagger $. Here $U_t$ is the unitary transformation that relates the solutions of the corresponding Schrödinger equations. In the many-body case one is usually interested in Hamiltonians with few-body (often, at most two-body) interactions. We refer to such Hamiltonians as physical. We formulate sufficient conditions on $U_t$ ensuring that $H_t$ is physical as long as $\widetilde H$ is physical (and vice versa). This way we obtain a general method for finding pairs of physical Hamiltonians $H_t$ and $\widetilde H$ such that the driven many-body dynamics governed by $H_t$ can be reduced to the quench dynamics due to the time-independent $\widetilde H$. We apply this method to a number of many-body systems. First we review the mapping of a spin system with isotropic Heisenberg interaction and arbitrary time-dependent magnetic field to a time-independent system without a magnetic field [F. Yan, L. Yang, and B. Li, Phys. Lett. A 251, 289–293; 259, 207–211 (1999)]. Then we demonstrate that essentially the same gauge transformation eliminates an arbitrary time-dependent magnetic field from a system of interacting fermions. Further, we apply the method to the quantum Ising spin system and a spin coupled to a bosonic environment. We also discuss a more general situation where $\widetilde H = \widetilde H_t$ is time-dependent but dynamically integrable.
Keywords: driven quantum dynamics, dynamical integrability, gauge transformation.
@article{TM_2021_313_a4,
     author = {Oleksandr V. Gamayun and Oleg V. Lychkovskiy},
     title = {A {Map} between {Time-Dependent} and {Time-Independent} {Quantum} {Many-Body} {Hamiltonians}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a4/}
}
TY  - JOUR
AU  - Oleksandr V. Gamayun
AU  - Oleg V. Lychkovskiy
TI  - A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 47
EP  - 58
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a4/
LA  - ru
ID  - TM_2021_313_a4
ER  - 
%0 Journal Article
%A Oleksandr V. Gamayun
%A Oleg V. Lychkovskiy
%T A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 47-58
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a4/
%G ru
%F TM_2021_313_a4
Oleksandr V. Gamayun; Oleg V. Lychkovskiy. A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 47-58. http://geodesic.mathdoc.fr/item/TM_2021_313_a4/

[1] Barmettler P., Fioretto D., Gritsev V., “Non-equilibrium dynamics of Gaudin models”, Europhys. Lett., 104:1 (2013), 10004 | DOI

[2] Berry M.V., “Transitionless quantum driving”, J. Phys. A: Math. Theor., 42:36 (2009), 365303 | DOI | MR | Zbl

[3] Blanes S., Casas F., Oteo J.A., Ros J., “The Magnus expansion and some of its applications”, Phys. Rep., 470:5–6 (2009), 151–238 | DOI | MR

[4] Del Campo A., “Shortcuts to adiabaticity by counterdiabatic driving”, Phys. Rev. Lett., 111:10 (2013), 100502 | DOI

[5] Del Campo A., Rams M.M., Zurek W.H., “Assisted finite-rate adiabatic passage across a quantum critical point: Exact solution for the quantum Ising model”, Phys. Rev. Lett., 109:11 (2012), 115703 | DOI

[6] Castin Y., “Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential”, C. r. Phys., 5:3 (2004), 407–410 | DOI

[7] Castin Y., Dum R., “Bose–Einstein condensates in time dependent traps”, Phys. Rev. Lett., 77:27 (1996), 5315–5319 | DOI

[8] Colcelli A., Mussardo G., Sierra G., Trombettoni A., “Integrable Floquet Hamiltonian for a periodically tilted 1D gas”, Phys. Rev. Lett., 123:13 (2019), 130401 | DOI | MR

[9] D'Alessio L., Rigol M., “Long-time behavior of isolated periodically driven interacting lattice systems”, Phys. Rev. X, 4:4 (2014), 041048

[10] Das A., “Exotic freezing of response in a quantum many-body system”, Phys. Rev. B, 82:17 (2010), 172402 | DOI

[11] Deffner S., Jarzynski C., del Campo A., “Classical and quantum shortcuts to adiabaticity for scale-invariant driving”, Phys. Rev. X, 4:2 (2014), 021013 | MR

[12] Demirplak M., Rice S.A., “Adiabatic population transfer with control fields”, J. Phys. Chem. A, 107:46 (2003), 9937–9945 | DOI

[13] Demirplak M., Rice S.A., “Assisted adiabatic passage revisited”, J. Phys. Chem. B, 109:14 (2005), 6838–6844 | DOI

[14] Dziarmaga J., “Dynamics of a quantum phase transition: Exact solution of the quantum Ising model”, Phys. Rev. Lett., 95:24 (2005), 245701 | DOI

[15] Eckardt A., “Colloquium: Atomic quantum gases in periodically driven optical lattices”, Rev. Mod. Phys., 89:1 (2017), 011004 | DOI | MR

[16] Eckardt A., Hauke P., Soltan-Panahi P., Becker C., Sengstock K., Lewenstein M., “Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice”, Europhys. Lett., 89:1 (2010), 10010 | DOI | MR

[17] Ermakov I., Byrnes T., “Time dynamics of Bethe ansatz solvable models”, Phys. Rev. B, 101:5 (2020), 054305 | DOI

[18] Essler F.H.L., Frahm H., Göhmann F., Klümper A., Korepin V.E., The one-dimensional Hubbard model, Cambridge Univ. Press, Cambridge, 2005 | Zbl

[19] Feynman R.P., Quantum electrodynamics, CRC Press, Boca Raton, FL, 2018 | MR

[20] Fioretto D., Caux J.-S., Gritsev V., “Exact out-of-equilibrium central spin dynamics from integrability”, New J. Phys., 16:4 (2014), 043024 | DOI

[21] Gamayun O., Slobodeniuk A., Caux J.-S., Lychkovskiy O., “Nonequilibrium phase transition in transport through a driven quantum point contact”, Phys. Rev. B, 103:4 (2021), L041405 | DOI | MR

[22] Gao X.-C., Xu J.-B., Qian T.-Z., “Formally exact solution and geometric phase for the spin-j system”, Phys. Lett. A, 152:9 (1991), 449–452 | DOI | MR

[23] Grabowski M.P., Mathieu P., “Quantum integrals of motion for the Heisenberg spin chain”, Mod. Phys. Lett. A, 9:24 (1994), 2197–2206 | DOI | MR | Zbl

[24] Gritsev V., Barmettler P., Demler E., “Scaling approach to quantum non-equilibrium dynamics of many-body systems”, New J. Phys., 12:11 (2010), 113005 | DOI | Zbl

[25] Gritsev V., Polkovnikov A., “Integrable Floquet dynamics”, SciPost Phys., 2:3 (2017), 021 | DOI | MR

[26] Il'in N., Aristova A., Lychkovskiy O., Adiabatic theorem for closed quantum systems initialized at finite temperature, E-print, 2020, arXiv: 2002.02947 [quant-ph]

[27] Jotzu G., et al., “Experimental realization of the topological Haldane model with ultracold fermions”, Nature, 515:7526 (2014), 237–240 | DOI

[28] Kagan Yu., Surkov E.L., Shlyapnikov G.V., “Evolution of a Bose-condensed gas under variations of the confining potential”, Phys. Rev. A, 54:3 (1996), R1753–R1756 | DOI

[29] Kato T., “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Japan, 5:6 (1950), 435–439 | DOI

[30] Kolodrubetz M., Sels D., Mehta P., Polkovnikov A., “Geometry and non-adiabatic response in quantum and classical systems”, Phys. Rep., 697 (2017), 1–87 | DOI | MR | Zbl

[31] Lazarides A., Das A., Moessner R., “Equilibrium states of generic quantum systems subject to periodic driving”, Phys. Rev. E, 90:1 (2014), 012110 | DOI

[32] Lai Y.-Z., Liang J.-Q., Müller-Kirsten H.J.W., Zhou J.-G., “Time-dependent quantum systems and the invariant Hermitian operator”, Phys. Rev. A, 53:5 (1996), 3691–3693 | DOI | MR

[33] Lewis H.R., Jr., Riesenfeld W.B., “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field”, J. Math. Phys., 10:8 (1969), 1458–1473 | DOI | MR | Zbl

[34] Lieb E., Schultz T., Mattis D., “Two soluble models of an antiferromagnetic chain”, Ann. Phys., 16:3 (1961), 407–466 | DOI | MR | Zbl

[35] Minguzzi A., Gangardt D.M., “Exact coherent states of a harmonically confined Tonks–Girardeau gas”, Phys. Rev. Lett., 94:24 (2005), 240404 | DOI

[36] Pfeuty P., “The one-dimensional Ising model with a transverse field”, Ann. Phys., 57:1 (1970), 79–90 | DOI

[37] Ponte P., Chandran A., Papić Z., Abanin D.A., “Periodically driven ergodic and many-body localized quantum systems”, Ann. Phys., 353 (2015), 196–204 | DOI | MR | Zbl

[38] Rabi I.I., Ramsey N.F., Schwinger J., “Use of rotating coordinates in magnetic resonance problems”, Rev. Mod. Phys., 26:2 (1954), 167–171 | DOI | Zbl

[39] Ringel M., Gritsev V., “Dynamical symmetry approach to path integrals of quantum spin systems”, Phys. Rev. A, 88:6 (2013), 062105 | DOI

[40] Saberi H., Opatrný T., Mølmer K., del Campo A., “Adiabatic tracking of quantum many-body dynamics”, Phys. Rev. A, 90:6 (2014), 060301 | DOI

[41] Scopa S., Landi G.T., Hammoumi A., Karevski D., “Exact solution of time-dependent Lindblad equations with closed algebras”, Phys. Rev. A, 99:2 (2019), 022105 | DOI | MR

[42] Scopa S., Landi G.T., Karevski D., “Lindblad–Floquet description of finite-time quantum heat engines”, Phys. Rev. A, 97:6 (2018), 062121 | DOI

[43] Sels D., Polkovnikov A., “Minimizing irreversible losses in quantum systems by local counterdiabatic driving”, Proc. Natl. Acad. Sci. USA, 114:20 (2017), E3909–E3916 | DOI | MR | Zbl

[44] Sinitsyn N.A., Yuzbashyan E.A., Chernyak V.Y., Patra A., Sun C., “Integrable time-dependent quantum Hamiltonians”, Phys. Rev. Lett., 120:19 (2018), 190402 | DOI | MR

[45] Wang S.J., Li F.L., Weiguny A., “Algebraic dynamics and time-dependent dynamical symmetry of nonautonomous systems”, Phys. Lett. A, 180:3 (1993), 189–196 | DOI | MR

[46] Wei J., Norman E., “Lie algebraic solution of linear differential equations”, J. Math. Phys., 4:4 (1963), 575–581 | DOI | MR | Zbl

[47] Wu L.-A., Segal D., “Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity”, Sci. Rep., 11:1 (2021), 4648 | DOI

[48] Wu L.-A., Sun J., Zhong J.-Y., “A new approach to calculating the Berry phase”, Phys. Lett. A, 183:4 (1993), 257–262 | DOI | MR

[49] Yan F., Yang L., Li B., “Formal exact solution for the Heisenberg spin system in a time-dependent magnetic field and Aharonov–Anandan phase”, Phys. Lett. A, 251:5 (1999), 289–293 | DOI | MR | Zbl

[50] Yan F., Yang L., Li B., “Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field”, Phys. Lett. A, 259:3–4 (1999), 207–211 | DOI | MR | Zbl