Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a4, author = {Oleksandr V. Gamayun and Oleg V. Lychkovskiy}, title = {A {Map} between {Time-Dependent} and {Time-Independent} {Quantum} {Many-Body} {Hamiltonians}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {47--58}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a4/} }
TY - JOUR AU - Oleksandr V. Gamayun AU - Oleg V. Lychkovskiy TI - A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 47 EP - 58 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a4/ LA - ru ID - TM_2021_313_a4 ER -
%0 Journal Article %A Oleksandr V. Gamayun %A Oleg V. Lychkovskiy %T A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 47-58 %V 313 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_313_a4/ %G ru %F TM_2021_313_a4
Oleksandr V. Gamayun; Oleg V. Lychkovskiy. A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 47-58. http://geodesic.mathdoc.fr/item/TM_2021_313_a4/
[1] Barmettler P., Fioretto D., Gritsev V., “Non-equilibrium dynamics of Gaudin models”, Europhys. Lett., 104:1 (2013), 10004 | DOI
[2] Berry M.V., “Transitionless quantum driving”, J. Phys. A: Math. Theor., 42:36 (2009), 365303 | DOI | MR | Zbl
[3] Blanes S., Casas F., Oteo J.A., Ros J., “The Magnus expansion and some of its applications”, Phys. Rep., 470:5–6 (2009), 151–238 | DOI | MR
[4] Del Campo A., “Shortcuts to adiabaticity by counterdiabatic driving”, Phys. Rev. Lett., 111:10 (2013), 100502 | DOI
[5] Del Campo A., Rams M.M., Zurek W.H., “Assisted finite-rate adiabatic passage across a quantum critical point: Exact solution for the quantum Ising model”, Phys. Rev. Lett., 109:11 (2012), 115703 | DOI
[6] Castin Y., “Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential”, C. r. Phys., 5:3 (2004), 407–410 | DOI
[7] Castin Y., Dum R., “Bose–Einstein condensates in time dependent traps”, Phys. Rev. Lett., 77:27 (1996), 5315–5319 | DOI
[8] Colcelli A., Mussardo G., Sierra G., Trombettoni A., “Integrable Floquet Hamiltonian for a periodically tilted 1D gas”, Phys. Rev. Lett., 123:13 (2019), 130401 | DOI | MR
[9] D'Alessio L., Rigol M., “Long-time behavior of isolated periodically driven interacting lattice systems”, Phys. Rev. X, 4:4 (2014), 041048
[10] Das A., “Exotic freezing of response in a quantum many-body system”, Phys. Rev. B, 82:17 (2010), 172402 | DOI
[11] Deffner S., Jarzynski C., del Campo A., “Classical and quantum shortcuts to adiabaticity for scale-invariant driving”, Phys. Rev. X, 4:2 (2014), 021013 | MR
[12] Demirplak M., Rice S.A., “Adiabatic population transfer with control fields”, J. Phys. Chem. A, 107:46 (2003), 9937–9945 | DOI
[13] Demirplak M., Rice S.A., “Assisted adiabatic passage revisited”, J. Phys. Chem. B, 109:14 (2005), 6838–6844 | DOI
[14] Dziarmaga J., “Dynamics of a quantum phase transition: Exact solution of the quantum Ising model”, Phys. Rev. Lett., 95:24 (2005), 245701 | DOI
[15] Eckardt A., “Colloquium: Atomic quantum gases in periodically driven optical lattices”, Rev. Mod. Phys., 89:1 (2017), 011004 | DOI | MR
[16] Eckardt A., Hauke P., Soltan-Panahi P., Becker C., Sengstock K., Lewenstein M., “Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice”, Europhys. Lett., 89:1 (2010), 10010 | DOI | MR
[17] Ermakov I., Byrnes T., “Time dynamics of Bethe ansatz solvable models”, Phys. Rev. B, 101:5 (2020), 054305 | DOI
[18] Essler F.H.L., Frahm H., Göhmann F., Klümper A., Korepin V.E., The one-dimensional Hubbard model, Cambridge Univ. Press, Cambridge, 2005 | Zbl
[19] Feynman R.P., Quantum electrodynamics, CRC Press, Boca Raton, FL, 2018 | MR
[20] Fioretto D., Caux J.-S., Gritsev V., “Exact out-of-equilibrium central spin dynamics from integrability”, New J. Phys., 16:4 (2014), 043024 | DOI
[21] Gamayun O., Slobodeniuk A., Caux J.-S., Lychkovskiy O., “Nonequilibrium phase transition in transport through a driven quantum point contact”, Phys. Rev. B, 103:4 (2021), L041405 | DOI | MR
[22] Gao X.-C., Xu J.-B., Qian T.-Z., “Formally exact solution and geometric phase for the spin-j system”, Phys. Lett. A, 152:9 (1991), 449–452 | DOI | MR
[23] Grabowski M.P., Mathieu P., “Quantum integrals of motion for the Heisenberg spin chain”, Mod. Phys. Lett. A, 9:24 (1994), 2197–2206 | DOI | MR | Zbl
[24] Gritsev V., Barmettler P., Demler E., “Scaling approach to quantum non-equilibrium dynamics of many-body systems”, New J. Phys., 12:11 (2010), 113005 | DOI | Zbl
[25] Gritsev V., Polkovnikov A., “Integrable Floquet dynamics”, SciPost Phys., 2:3 (2017), 021 | DOI | MR
[26] Il'in N., Aristova A., Lychkovskiy O., Adiabatic theorem for closed quantum systems initialized at finite temperature, E-print, 2020, arXiv: 2002.02947 [quant-ph]
[27] Jotzu G., et al., “Experimental realization of the topological Haldane model with ultracold fermions”, Nature, 515:7526 (2014), 237–240 | DOI
[28] Kagan Yu., Surkov E.L., Shlyapnikov G.V., “Evolution of a Bose-condensed gas under variations of the confining potential”, Phys. Rev. A, 54:3 (1996), R1753–R1756 | DOI
[29] Kato T., “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Japan, 5:6 (1950), 435–439 | DOI
[30] Kolodrubetz M., Sels D., Mehta P., Polkovnikov A., “Geometry and non-adiabatic response in quantum and classical systems”, Phys. Rep., 697 (2017), 1–87 | DOI | MR | Zbl
[31] Lazarides A., Das A., Moessner R., “Equilibrium states of generic quantum systems subject to periodic driving”, Phys. Rev. E, 90:1 (2014), 012110 | DOI
[32] Lai Y.-Z., Liang J.-Q., Müller-Kirsten H.J.W., Zhou J.-G., “Time-dependent quantum systems and the invariant Hermitian operator”, Phys. Rev. A, 53:5 (1996), 3691–3693 | DOI | MR
[33] Lewis H.R., Jr., Riesenfeld W.B., “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field”, J. Math. Phys., 10:8 (1969), 1458–1473 | DOI | MR | Zbl
[34] Lieb E., Schultz T., Mattis D., “Two soluble models of an antiferromagnetic chain”, Ann. Phys., 16:3 (1961), 407–466 | DOI | MR | Zbl
[35] Minguzzi A., Gangardt D.M., “Exact coherent states of a harmonically confined Tonks–Girardeau gas”, Phys. Rev. Lett., 94:24 (2005), 240404 | DOI
[36] Pfeuty P., “The one-dimensional Ising model with a transverse field”, Ann. Phys., 57:1 (1970), 79–90 | DOI
[37] Ponte P., Chandran A., Papić Z., Abanin D.A., “Periodically driven ergodic and many-body localized quantum systems”, Ann. Phys., 353 (2015), 196–204 | DOI | MR | Zbl
[38] Rabi I.I., Ramsey N.F., Schwinger J., “Use of rotating coordinates in magnetic resonance problems”, Rev. Mod. Phys., 26:2 (1954), 167–171 | DOI | Zbl
[39] Ringel M., Gritsev V., “Dynamical symmetry approach to path integrals of quantum spin systems”, Phys. Rev. A, 88:6 (2013), 062105 | DOI
[40] Saberi H., Opatrný T., Mølmer K., del Campo A., “Adiabatic tracking of quantum many-body dynamics”, Phys. Rev. A, 90:6 (2014), 060301 | DOI
[41] Scopa S., Landi G.T., Hammoumi A., Karevski D., “Exact solution of time-dependent Lindblad equations with closed algebras”, Phys. Rev. A, 99:2 (2019), 022105 | DOI | MR
[42] Scopa S., Landi G.T., Karevski D., “Lindblad–Floquet description of finite-time quantum heat engines”, Phys. Rev. A, 97:6 (2018), 062121 | DOI
[43] Sels D., Polkovnikov A., “Minimizing irreversible losses in quantum systems by local counterdiabatic driving”, Proc. Natl. Acad. Sci. USA, 114:20 (2017), E3909–E3916 | DOI | MR | Zbl
[44] Sinitsyn N.A., Yuzbashyan E.A., Chernyak V.Y., Patra A., Sun C., “Integrable time-dependent quantum Hamiltonians”, Phys. Rev. Lett., 120:19 (2018), 190402 | DOI | MR
[45] Wang S.J., Li F.L., Weiguny A., “Algebraic dynamics and time-dependent dynamical symmetry of nonautonomous systems”, Phys. Lett. A, 180:3 (1993), 189–196 | DOI | MR
[46] Wei J., Norman E., “Lie algebraic solution of linear differential equations”, J. Math. Phys., 4:4 (1963), 575–581 | DOI | MR | Zbl
[47] Wu L.-A., Segal D., “Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity”, Sci. Rep., 11:1 (2021), 4648 | DOI
[48] Wu L.-A., Sun J., Zhong J.-Y., “A new approach to calculating the Berry phase”, Phys. Lett. A, 183:4 (1993), 257–262 | DOI | MR
[49] Yan F., Yang L., Li B., “Formal exact solution for the Heisenberg spin system in a time-dependent magnetic field and Aharonov–Anandan phase”, Phys. Lett. A, 251:5 (1999), 289–293 | DOI | MR | Zbl
[50] Yan F., Yang L., Li B., “Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field”, Phys. Lett. A, 259:3–4 (1999), 207–211 | DOI | MR | Zbl