Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 33-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of square integrable functions on a Hilbert space with a translation invariant measure, we study unitary groups of operators of shift by vectors of the momentum space. Analyzing the averaging of functionals of Gaussian random processes in the momentum space, we obtain a semigroup of self-adjoint contractions; we establish conditions for the strong continuity of this semigroup and study its generator, which is the operator of multiplication by a quadratic form of a nonpositive trace-class operator in the Hilbert space. We compare the properties of the groups of shift operators in the coordinate and momentum spaces, as well as the properties of semigroups of self-adjoint contractions generated by diffusion in the coordinate and momentum spaces. In addition, we show that one cannot define the Fourier transform as a unitary map that would provide a unitary equivalence of these contraction semigroups.
Keywords: translation invariant measure on a Hilbert space, Gaussian random process, strongly continuous semigroup
Mots-clés : Fourier transform.
@article{TM_2021_313_a3,
     author = {V. M. Busovikov and D. V. Zavadsky and V. Zh. Sakbaev},
     title = {Quantum {Systems} with {Infinite-Dimensional} {Coordinate} {Space} and the {Fourier} {Transform}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a3/}
}
TY  - JOUR
AU  - V. M. Busovikov
AU  - D. V. Zavadsky
AU  - V. Zh. Sakbaev
TI  - Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 33
EP  - 46
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a3/
LA  - ru
ID  - TM_2021_313_a3
ER  - 
%0 Journal Article
%A V. M. Busovikov
%A D. V. Zavadsky
%A V. Zh. Sakbaev
%T Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 33-46
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a3/
%G ru
%F TM_2021_313_a3
V. M. Busovikov; D. V. Zavadsky; V. Zh. Sakbaev. Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 33-46. http://geodesic.mathdoc.fr/item/TM_2021_313_a3/

[1] Baker R., ““Lebesgue measure” on $\mathbb R^{\infty }$”, Proc. Amer. Math. Soc., 113:4 (1991), 1023–1029 | MR | Zbl

[2] V. I. Bogachev, Gaussian Measures, Math. Surv. Monogr., 62, Am. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[3] V. I. Bogachev, Measure Theory, v. 1, Springer, Berlin, 2007 | MR | Zbl

[4] V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis, Moscow Lect., 4, Springer, Cham, 2020 | DOI | Zbl

[5] V. M. Busovikov and V. Zh. Sakbaev, “Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups”, Izv. Math., 84:4 (2020), 694–721 | DOI | MR | Zbl

[6] T. Kato, Perturbation Theory for Linear Operators, Grundl. Math. Wiss., 132, Springer, Berlin, 1966 | MR | Zbl

[7] H.-H. Kuo, Gaussian Measures in Banach Spaces, Springer, Berlin, 1975 | MR | Zbl

[8] Orlov Yu.N., Sakbaev V.Zh., Zavadsky D.V., “Operator random walks and quantum oscillator”, Lobachevskii J. Math., 41:4 (2020), 676–685 | DOI | MR | Zbl

[9] V. Zh. Sakbaev, “Spectral aspects of regularization of the Cauchy problem for a degenerate equation”, Proc. Steklov Inst. Math., 261 (2008), 253–261 | DOI | MR | Zbl

[10] V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, J. Math. Sci., 213:3 (2016), 287–459 | DOI | MR | Zbl

[11] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theor. Math. Phys., 191:3 (2017), 886–909 | DOI | MR | Zbl

[12] V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci., 241:4 (2019), 469–500 | DOI | MR | Zbl

[13] O. G. Smolyanov and N. N. Shamarov, “Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function”, Dokl. Math., 101:3 (2020), 227–230 | DOI | MR

[14] N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions on Banach Spaces, Math. Appl. (Sov. Ser.), 14, D. Reidel, Dordrecht, 1987 | MR | MR | Zbl

[15] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272 | DOI | MR | Zbl

[16] D. V. Zavadsky and V. Zh. Sakbaev, “Diffusion on a Hilbert space equipped with a shift- and rotation-invariant measure”, Proc. Steklov Inst. Math., 306 (2019), 102–119 | DOI | MR | Zbl