Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a3, author = {V. M. Busovikov and D. V. Zavadsky and V. Zh. Sakbaev}, title = {Quantum {Systems} with {Infinite-Dimensional} {Coordinate} {Space} and the {Fourier} {Transform}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {33--46}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a3/} }
TY - JOUR AU - V. M. Busovikov AU - D. V. Zavadsky AU - V. Zh. Sakbaev TI - Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 33 EP - 46 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a3/ LA - ru ID - TM_2021_313_a3 ER -
%0 Journal Article %A V. M. Busovikov %A D. V. Zavadsky %A V. Zh. Sakbaev %T Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 33-46 %V 313 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_313_a3/ %G ru %F TM_2021_313_a3
V. M. Busovikov; D. V. Zavadsky; V. Zh. Sakbaev. Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 33-46. http://geodesic.mathdoc.fr/item/TM_2021_313_a3/
[1] Baker R., ““Lebesgue measure” on $\mathbb R^{\infty }$”, Proc. Amer. Math. Soc., 113:4 (1991), 1023–1029 | MR | Zbl
[2] V. I. Bogachev, Gaussian Measures, Math. Surv. Monogr., 62, Am. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[3] V. I. Bogachev, Measure Theory, v. 1, Springer, Berlin, 2007 | MR | Zbl
[4] V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis, Moscow Lect., 4, Springer, Cham, 2020 | DOI | Zbl
[5] V. M. Busovikov and V. Zh. Sakbaev, “Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups”, Izv. Math., 84:4 (2020), 694–721 | DOI | MR | Zbl
[6] T. Kato, Perturbation Theory for Linear Operators, Grundl. Math. Wiss., 132, Springer, Berlin, 1966 | MR | Zbl
[7] H.-H. Kuo, Gaussian Measures in Banach Spaces, Springer, Berlin, 1975 | MR | Zbl
[8] Orlov Yu.N., Sakbaev V.Zh., Zavadsky D.V., “Operator random walks and quantum oscillator”, Lobachevskii J. Math., 41:4 (2020), 676–685 | DOI | MR | Zbl
[9] V. Zh. Sakbaev, “Spectral aspects of regularization of the Cauchy problem for a degenerate equation”, Proc. Steklov Inst. Math., 261 (2008), 253–261 | DOI | MR | Zbl
[10] V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, J. Math. Sci., 213:3 (2016), 287–459 | DOI | MR | Zbl
[11] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theor. Math. Phys., 191:3 (2017), 886–909 | DOI | MR | Zbl
[12] V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci., 241:4 (2019), 469–500 | DOI | MR | Zbl
[13] O. G. Smolyanov and N. N. Shamarov, “Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function”, Dokl. Math., 101:3 (2020), 227–230 | DOI | MR
[14] N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions on Banach Spaces, Math. Appl. (Sov. Ser.), 14, D. Reidel, Dordrecht, 1987 | MR | MR | Zbl
[15] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272 | DOI | MR | Zbl
[16] D. V. Zavadsky and V. Zh. Sakbaev, “Diffusion on a Hilbert space equipped with a shift- and rotation-invariant measure”, Proc. Steklov Inst. Math., 306 (2019), 102–119 | DOI | MR | Zbl