On the Thermalization Hypothesis of Quantum States
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 285-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenstate thermalization hypothesis (ETH) is discussed. We note that one common formulation of the ETH does not necessarily imply thermalization of an observable of an isolated many-body quantum system. We show that to get thermalization, one has to postulate the canonical or microcanonical distribution in the ETH ansatz. More generally, any other average can be postulated in the generalized ETH ansatz, which leads to a corresponding equilibration condition.
Keywords: ETH, eigenstate thermalization hypothesis, thermalization
Mots-clés : equilibration.
@article{TM_2021_313_a24,
     author = {I. V. Volovich and O. V. Inozemcev},
     title = {On the {Thermalization} {Hypothesis} of {Quantum} {States}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {285--295},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a24/}
}
TY  - JOUR
AU  - I. V. Volovich
AU  - O. V. Inozemcev
TI  - On the Thermalization Hypothesis of Quantum States
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 285
EP  - 295
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a24/
LA  - ru
ID  - TM_2021_313_a24
ER  - 
%0 Journal Article
%A I. V. Volovich
%A O. V. Inozemcev
%T On the Thermalization Hypothesis of Quantum States
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 285-295
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a24/
%G ru
%F TM_2021_313_a24
I. V. Volovich; O. V. Inozemcev. On the Thermalization Hypothesis of Quantum States. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 285-295. http://geodesic.mathdoc.fr/item/TM_2021_313_a24/

[1] Anza F., Gogolin C., Huber M., “Eigenstate thermalization for degenerate observables”, Phys. Rev. Lett., 120:15 (2018), 150603 ; arXiv: 1708.02881 [cond-mat.stat-mech] | DOI

[2] Berry M.V., “Regular and irregular semiclassical wavefunctions”, J. Phys. A: Math. Gen., 10 (1977), 2083–2091 | DOI | MR | Zbl

[3] Bleistein N., Handelsman R.A., Asymptotic expansions of integrals, Dover Publ., New York, 1986 | MR

[4] Borgonovi F., Izrailev F.M., Santos L.F., Zelevinsky V.G., “Quantum chaos and thermalization in isolated systems of interacting particles”, Phys. Rep., 626 (2016), 1–58 ; arXiv: 1602.01874 [cond-mat.stat-mech] | DOI | MR | Zbl

[5] D'Alessio L., Kafri Y., Polkovnikov A., Rigol M., “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics”, Adv. Phys., 65:3 (2016), 239–362 ; arXiv: 1509.06411 [cond-mat.stat-mech] | DOI

[6] Deutsch J.M., “Quantum statistical mechanics in a closed system”, Phys. Rev. A, 43:4 (1991), 2046–2049 | DOI

[7] Deutsch J.M., “Thermodynamic entropy of a many-body energy eigenstate”, New J. Phys., 12:7 (2010), 075021 ; arXiv: 0911.0056 [cond-mat.stat-mech] | DOI

[8] Deutsch J.M., “Eigenstate thermalization hypothesis”, Rep. Prog. Phys., 81:8 (2018), 082001 ; arXiv: 1805.01616 [quant-ph] | DOI | MR

[9] Dymarsky A., Lashkari N., Liu H., “Subsystem eigenstate thermalization hypothesis”, Phys. Rev. E, 97:1 (2018), 012140 ; arXiv: 1611.08764 [cond-mat.stat-mech] | DOI

[10] Fedoryuk M.V., Asimptotika: Integraly i ryady, Nauka, M., 1987 | MR

[11] Goldstein S., Lebowitz J.L., Tumulka R., Zanghi N., “Long-time behavior of macroscopic quantum systems: Commentary accompanying the English translation of John von Neumann's 1929 article on the quantum ergodic theorem”, Eur. Phys. J. H, 35:2 (2010), 173–200 ; arXiv: 1003.2129 [quant-ph] | DOI

[12] Iyer D., Srednicki M., Rigol M., “Optimization of finite-size errors in finite-temperature calculations of unordered phases”, Phys. Rev. E, 91:6 (2015), 062142 ; arXiv: 1505.03620 [cond-mat.stat-mech] | DOI | MR

[13] Mori T., Ikeda T.N., Kaminishi E., Ueda M., “Thermalization and prethermalization in isolated quantum systems: A theoretical overview”, J. Phys. B: At. Mol. Opt. Phys., 51:11 (2018), 112001 ; arXiv: 1712.08790 [cond-mat.stat-mech] | DOI

[14] Murthy C., Srednicki M., “Bounds on chaos from the eigenstate thermalization hypothesis”, Phys. Rev. Lett., 123:23 (2019), 230606 ; arXiv: 1906.10808 [cond-mat.stat-mech] | DOI | MR

[15] Neumann J. von., “Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik”, Z. Phys., 57 (1929), 30–70 ; “Proof of the ergodic theorem and the H-theorem in quantum mechanics”, Eur. Phys. J. H, 35:2 (2010), 201–237 ; arXiv: 1003.2133 [physics.hist-ph] | DOI | Zbl | DOI

[16] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011 | MR | Zbl

[17] Reimann P., “Eigenstate thermalization: Deutsch's approach and beyond”, New J. Phys., 17:5 (2015), 055025 ; arXiv: 1505.07627 [cond-mat.stat-mech] | DOI | Zbl

[18] Srednicki M., “Chaos and quantum thermalization”, Phys. Rev. E, 50:2 (1994), 888–901 ; arXiv: cond-mat/9403051. | DOI

[19] Srednicki M., “Thermal fluctuations in quantized chaotic systems”, J. Phys. A: Math. Gen., 29:4 (1996), L75–L79 ; arXiv: chao-dyn/9511001. | DOI | MR | Zbl

[20] Srednicki M., “The approach to thermal equilibrium in quantized chaotic systems”, J. Phys. A: Math. Gen., 32:7 (1999), 1163–1175 ; arXiv: cond-mat/9809360 [cond-mat.stat-mech] | DOI | MR | Zbl

[21] Rigol M., Dunjko V., Olshanii M., “Thermalization and its mechanism for generic isolated quantum systems”, Nature, 452 (2008), 854–858 ; arXiv: 0708.1324 [cond-mat.stat-mech] | DOI

[22] Rigol M., Srednicki M., “Alternatives to eigenstate thermalization”, Phys. Rev. Lett., 108:11 (2012), 110601 ; arXiv: 1108.0928 [cond-mat.stat-mech] | DOI

[23] Volovich I.V., “Seven principles of quantum mechanics”, Foundations of probability and physics–2, Proc. Int. Conf. (Växjö, 2002), Math. Model. Phys. Eng. Cogn. Sci., 5, Växjö Univ. Press, Växjö, 2003, 569–575 ; arXiv: quant-ph/0212126. | MR

[24] Yukalov V.I., “Equilibration and thermalization in finite quantum systems”, Laser Phys. Lett., 8:7 (2011), 485–507 ; arXiv: 1201.2781 [cond-mat.stat-mech] | DOI