Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a24, author = {I. V. Volovich and O. V. Inozemcev}, title = {On the {Thermalization} {Hypothesis} of {Quantum} {States}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {285--295}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a24/} }
TY - JOUR AU - I. V. Volovich AU - O. V. Inozemcev TI - On the Thermalization Hypothesis of Quantum States JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 285 EP - 295 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a24/ LA - ru ID - TM_2021_313_a24 ER -
I. V. Volovich; O. V. Inozemcev. On the Thermalization Hypothesis of Quantum States. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 285-295. http://geodesic.mathdoc.fr/item/TM_2021_313_a24/
[1] Anza F., Gogolin C., Huber M., “Eigenstate thermalization for degenerate observables”, Phys. Rev. Lett., 120:15 (2018), 150603 ; arXiv: 1708.02881 [cond-mat.stat-mech] | DOI
[2] Berry M.V., “Regular and irregular semiclassical wavefunctions”, J. Phys. A: Math. Gen., 10 (1977), 2083–2091 | DOI | MR | Zbl
[3] Bleistein N., Handelsman R.A., Asymptotic expansions of integrals, Dover Publ., New York, 1986 | MR
[4] Borgonovi F., Izrailev F.M., Santos L.F., Zelevinsky V.G., “Quantum chaos and thermalization in isolated systems of interacting particles”, Phys. Rep., 626 (2016), 1–58 ; arXiv: 1602.01874 [cond-mat.stat-mech] | DOI | MR | Zbl
[5] D'Alessio L., Kafri Y., Polkovnikov A., Rigol M., “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics”, Adv. Phys., 65:3 (2016), 239–362 ; arXiv: 1509.06411 [cond-mat.stat-mech] | DOI
[6] Deutsch J.M., “Quantum statistical mechanics in a closed system”, Phys. Rev. A, 43:4 (1991), 2046–2049 | DOI
[7] Deutsch J.M., “Thermodynamic entropy of a many-body energy eigenstate”, New J. Phys., 12:7 (2010), 075021 ; arXiv: 0911.0056 [cond-mat.stat-mech] | DOI
[8] Deutsch J.M., “Eigenstate thermalization hypothesis”, Rep. Prog. Phys., 81:8 (2018), 082001 ; arXiv: 1805.01616 [quant-ph] | DOI | MR
[9] Dymarsky A., Lashkari N., Liu H., “Subsystem eigenstate thermalization hypothesis”, Phys. Rev. E, 97:1 (2018), 012140 ; arXiv: 1611.08764 [cond-mat.stat-mech] | DOI
[10] Fedoryuk M.V., Asimptotika: Integraly i ryady, Nauka, M., 1987 | MR
[11] Goldstein S., Lebowitz J.L., Tumulka R., Zanghi N., “Long-time behavior of macroscopic quantum systems: Commentary accompanying the English translation of John von Neumann's 1929 article on the quantum ergodic theorem”, Eur. Phys. J. H, 35:2 (2010), 173–200 ; arXiv: 1003.2129 [quant-ph] | DOI
[12] Iyer D., Srednicki M., Rigol M., “Optimization of finite-size errors in finite-temperature calculations of unordered phases”, Phys. Rev. E, 91:6 (2015), 062142 ; arXiv: 1505.03620 [cond-mat.stat-mech] | DOI | MR
[13] Mori T., Ikeda T.N., Kaminishi E., Ueda M., “Thermalization and prethermalization in isolated quantum systems: A theoretical overview”, J. Phys. B: At. Mol. Opt. Phys., 51:11 (2018), 112001 ; arXiv: 1712.08790 [cond-mat.stat-mech] | DOI
[14] Murthy C., Srednicki M., “Bounds on chaos from the eigenstate thermalization hypothesis”, Phys. Rev. Lett., 123:23 (2019), 230606 ; arXiv: 1906.10808 [cond-mat.stat-mech] | DOI | MR
[15] Neumann J. von., “Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik”, Z. Phys., 57 (1929), 30–70 ; “Proof of the ergodic theorem and the H-theorem in quantum mechanics”, Eur. Phys. J. H, 35:2 (2010), 201–237 ; arXiv: 1003.2133 [physics.hist-ph] | DOI | Zbl | DOI
[16] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011 | MR | Zbl
[17] Reimann P., “Eigenstate thermalization: Deutsch's approach and beyond”, New J. Phys., 17:5 (2015), 055025 ; arXiv: 1505.07627 [cond-mat.stat-mech] | DOI | Zbl
[18] Srednicki M., “Chaos and quantum thermalization”, Phys. Rev. E, 50:2 (1994), 888–901 ; arXiv: cond-mat/9403051. | DOI
[19] Srednicki M., “Thermal fluctuations in quantized chaotic systems”, J. Phys. A: Math. Gen., 29:4 (1996), L75–L79 ; arXiv: chao-dyn/9511001. | DOI | MR | Zbl
[20] Srednicki M., “The approach to thermal equilibrium in quantized chaotic systems”, J. Phys. A: Math. Gen., 32:7 (1999), 1163–1175 ; arXiv: cond-mat/9809360 [cond-mat.stat-mech] | DOI | MR | Zbl
[21] Rigol M., Dunjko V., Olshanii M., “Thermalization and its mechanism for generic isolated quantum systems”, Nature, 452 (2008), 854–858 ; arXiv: 0708.1324 [cond-mat.stat-mech] | DOI
[22] Rigol M., Srednicki M., “Alternatives to eigenstate thermalization”, Phys. Rev. Lett., 108:11 (2012), 110601 ; arXiv: 1108.0928 [cond-mat.stat-mech] | DOI
[23] Volovich I.V., “Seven principles of quantum mechanics”, Foundations of probability and physics–2, Proc. Int. Conf. (Växjö, 2002), Math. Model. Phys. Eng. Cogn. Sci., 5, Växjö Univ. Press, Växjö, 2003, 569–575 ; arXiv: quant-ph/0212126. | MR
[24] Yukalov V.I., “Equilibration and thermalization in finite quantum systems”, Laser Phys. Lett., 8:7 (2011), 485–507 ; arXiv: 1201.2781 [cond-mat.stat-mech] | DOI