On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 280-284

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of quantum spins $1/2$ with isotropic Heisenberg interaction play an important role in physics. In studying such systems, it may be useful to have a complete, yet non-overcomplete, basis of operators each of which has the symmetry of the Hamiltonian, i.e., is invariant with respect to rotations (global $\mathrm {SU}(2)$ transformations of the Pauli matrices). This paper presents an algorithm for constructing such a basis. The algorithm is implemented in Wolfram Mathematica.
Mots-clés : Pauli matrices
Keywords: isotropic Heisenberg interaction, quantum spin systems, operator basis.
@article{TM_2021_313_a23,
     author = {F. G. Uskov},
     title = {On a {Complete} {Basis} in the {Space} of {Rotationally} {Invariant} {Operators} of $N$ {Quantum} {Spins} $1/2$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {280--284},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a23/}
}
TY  - JOUR
AU  - F. G. Uskov
TI  - On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 280
EP  - 284
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a23/
LA  - ru
ID  - TM_2021_313_a23
ER  - 
%0 Journal Article
%A F. G. Uskov
%T On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 280-284
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a23/
%G ru
%F TM_2021_313_a23
F. G. Uskov. On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 280-284. http://geodesic.mathdoc.fr/item/TM_2021_313_a23/