Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a23, author = {F. G. Uskov}, title = {On a {Complete} {Basis} in the {Space} of {Rotationally} {Invariant} {Operators} of $N$ {Quantum} {Spins} $1/2$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {280--284}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a23/} }
TY - JOUR AU - F. G. Uskov TI - On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 280 EP - 284 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a23/ LA - ru ID - TM_2021_313_a23 ER -
%0 Journal Article %A F. G. Uskov %T On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 280-284 %V 313 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_313_a23/ %G ru %F TM_2021_313_a23
F. G. Uskov. On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 280-284. http://geodesic.mathdoc.fr/item/TM_2021_313_a23/