Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a23, author = {F. G. Uskov}, title = {On a {Complete} {Basis} in the {Space} of {Rotationally} {Invariant} {Operators} of $N$ {Quantum} {Spins} $1/2$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {280--284}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a23/} }
TY - JOUR AU - F. G. Uskov TI - On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 280 EP - 284 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a23/ LA - ru ID - TM_2021_313_a23 ER -
%0 Journal Article %A F. G. Uskov %T On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 280-284 %V 313 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_313_a23/ %G ru %F TM_2021_313_a23
F. G. Uskov. On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 280-284. http://geodesic.mathdoc.fr/item/TM_2021_313_a23/
[1] Shpagina E., Uskov F., Il'in N., Lychkovskiy O., “Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries”, J. Phys. A: Math. Theor., 53:7 (2020), 075301 ; arXiv: 1812.03056 [quant-ph] | DOI | MR
[2] Uskov F., Lychkovskiy O., “A variational lower bound on the ground state of a many-body system and the squaring parametrization of density matrices”, J. Phys.: Conf. Ser., 1163 (2019), 012057 ; arXiv: 1902.09246 [quant-ph] | DOI
[3] Il'in N., Shpagina E., Uskov F., Lychkovskiy O., “Squaring parametrization of constrained and unconstrained sets of quantum states”, J. Phys. A: Math. Theor., 51:8 (2018), 085301 ; arXiv: 1704.03861 [quant-ph] | DOI | MR | Zbl
[4] Grabowski M.P., Mathieu P., “Quantum integrals of motion for the Heisenberg spin chain”, Mod. Phys. Lett. A, 9:24 (1994), 2197–2206 ; arXiv: hep-th/9403149. | DOI | MR | Zbl
[5] Shiraishi N., “Proof of the absence of local conserved quantities in the XYZ chain with a magnetic field”, Europhys. Lett., 128:1 (2019), 17002 | DOI
[6] Malikis S., Kurlov D.V., Gritsev V., Quasi-conserved quantities in the perturbed XXX spin chain, E-print, 2020, arXiv: 2007.01715 [cond-mat.stat-mech]
[7] Andrews D.L., Thirunamachandran T., “On three-dimensional rotational averages”, J. Chem. Phys., 67:11 (1977), 5026–5033 | DOI
[8] https://github.com/FeelUsM/ScalarMixedSpins/blob/master/tables.nb
[9] Kronecker delta, Wikipedia, the free encyclopedia, 2021 https://en.wikipedia.org/w/index.php?title=Kronecker_delta&oldid=1015643574#Generalizations