On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 280-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of quantum spins $1/2$ with isotropic Heisenberg interaction play an important role in physics. In studying such systems, it may be useful to have a complete, yet non-overcomplete, basis of operators each of which has the symmetry of the Hamiltonian, i.e., is invariant with respect to rotations (global $\mathrm {SU}(2)$ transformations of the Pauli matrices). This paper presents an algorithm for constructing such a basis. The algorithm is implemented in Wolfram Mathematica.
Mots-clés : Pauli matrices
Keywords: isotropic Heisenberg interaction, quantum spin systems, operator basis.
@article{TM_2021_313_a23,
     author = {F. G. Uskov},
     title = {On a {Complete} {Basis} in the {Space} of {Rotationally} {Invariant} {Operators} of $N$ {Quantum} {Spins} $1/2$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {280--284},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a23/}
}
TY  - JOUR
AU  - F. G. Uskov
TI  - On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 280
EP  - 284
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a23/
LA  - ru
ID  - TM_2021_313_a23
ER  - 
%0 Journal Article
%A F. G. Uskov
%T On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 280-284
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a23/
%G ru
%F TM_2021_313_a23
F. G. Uskov. On a Complete Basis in the Space of Rotationally Invariant Operators of $N$ Quantum Spins $1/2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 280-284. http://geodesic.mathdoc.fr/item/TM_2021_313_a23/

[1] Shpagina E., Uskov F., Il'in N., Lychkovskiy O., “Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries”, J. Phys. A: Math. Theor., 53:7 (2020), 075301 ; arXiv: 1812.03056 [quant-ph] | DOI | MR

[2] Uskov F., Lychkovskiy O., “A variational lower bound on the ground state of a many-body system and the squaring parametrization of density matrices”, J. Phys.: Conf. Ser., 1163 (2019), 012057 ; arXiv: 1902.09246 [quant-ph] | DOI

[3] Il'in N., Shpagina E., Uskov F., Lychkovskiy O., “Squaring parametrization of constrained and unconstrained sets of quantum states”, J. Phys. A: Math. Theor., 51:8 (2018), 085301 ; arXiv: 1704.03861 [quant-ph] | DOI | MR | Zbl

[4] Grabowski M.P., Mathieu P., “Quantum integrals of motion for the Heisenberg spin chain”, Mod. Phys. Lett. A, 9:24 (1994), 2197–2206 ; arXiv: hep-th/9403149. | DOI | MR | Zbl

[5] Shiraishi N., “Proof of the absence of local conserved quantities in the XYZ chain with a magnetic field”, Europhys. Lett., 128:1 (2019), 17002 | DOI

[6] Malikis S., Kurlov D.V., Gritsev V., Quasi-conserved quantities in the perturbed XXX spin chain, E-print, 2020, arXiv: 2007.01715 [cond-mat.stat-mech]

[7] Andrews D.L., Thirunamachandran T., “On three-dimensional rotational averages”, J. Chem. Phys., 67:11 (1977), 5026–5033 | DOI

[8] https://github.com/FeelUsM/ScalarMixedSpins/blob/master/tables.nb

[9] Kronecker delta, Wikipedia, the free encyclopedia, 2021 https://en.wikipedia.org/w/index.php?title=Kronecker_delta&oldid=1015643574#Generalizations