Spectral Order for Jordan Triples
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 275-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

We initiate the study of the spectral order on Jordan triples. The order given on the tripotents is extended to the spectral order on the triples. We show that Jordan triples equipped with the spectral order are not lattices but preserve the Olson “momentum” characteristic.
@article{TM_2021_313_a22,
     author = {Ekaterina A. Turilova and Jan Hamhalter},
     title = {Spectral {Order} for {Jordan} {Triples}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {275--279},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a22/}
}
TY  - JOUR
AU  - Ekaterina A. Turilova
AU  - Jan Hamhalter
TI  - Spectral Order for Jordan Triples
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 275
EP  - 279
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a22/
LA  - ru
ID  - TM_2021_313_a22
ER  - 
%0 Journal Article
%A Ekaterina A. Turilova
%A Jan Hamhalter
%T Spectral Order for Jordan Triples
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 275-279
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a22/
%G ru
%F TM_2021_313_a22
Ekaterina A. Turilova; Jan Hamhalter. Spectral Order for Jordan Triples. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 275-279. http://geodesic.mathdoc.fr/item/TM_2021_313_a22/

[1] Arveson W., “On groups of automorphisms of operator algebras”, J. Funct. Anal., 15:3 (1974), 217–243 | DOI | MR | Zbl

[2] Akemann C., Weaver N., “Minimal upper bounds of commuting operators”, Proc. Amer. Math. Soc., 124:11 (1996), 3469–3476 | DOI | MR | Zbl

[3] Cabrera García M., Rodríguez Palacois Á., Non-associative normed algebras. V. 2: Representation theory and the Zel'manov approach, Encycl. Math. Appl., 167, Cambridge Univ. Press, Cambridge, 2018 | MR

[4] Edwards C.M., Rüttimann G.T., “On the facial structure of the unit balls in a JBW$^*$-triple and its predual”, J. London Math. Soc. Ser. 2, 38:2 (1988), 317–332 | DOI | MR | Zbl

[5] Friedmann Ya., Physical applications of homogeneous balls, Prog. Math. Phys., 40, Birkhäuser, Boston, 2005 | MR

[6] De Groote H.F., On a canonical lattice structure on the effect algebra of a von Neumann algebra, E-print, 2004, arXiv: math-ph/0410018v1

[7] Hamhalter J., “Spectral order of operators and range projections”, J. Math. Anal. Appl., 331:2 (2007), 1122–1134 | DOI | MR | Zbl

[8] Hamhalter J., Turilova E., “Spectral order on $AW^*$-algebras and its preservers”, Lobachevskii J. Math., 37:4 (2016), 439–448 | DOI | MR | Zbl

[9] Hanche-Olsen H., Størmer E., Jordan operator algebras, Pitman Adv. Publ. Program, Boston, 1984 | MR | Zbl

[10] Kadison R.V., “Order properties of bounded self-adjoint operators”, Proc. Amer. Math. Soc., 2 (1951), 505–510 | DOI | MR | Zbl

[11] Kato T., “Spectral order and a matrix limit theorem”, Linear Multilinear Algebra, 8 (1979), 15–19 | DOI | MR | Zbl

[12] Olson M.P., “The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice”, Proc. Amer. Math. Soc., 28:2 (1971), 537–544 | DOI | MR | Zbl

[13] Topping D.M., Jordan algebras of self-adjoint operators, Mem. AMS, 53, Amer. Math. Soc., Providence, RI, 1965 | MR | Zbl

[14] Wright J.D.M., “Jordan $C^*$-algebras”, Mich. Math. J., 24 (1977), 291–302 | DOI | MR | Zbl