An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 253-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple example of completely positive dynamics is considered for which both the generator of a nonlocal integro-differential equation leading to such dynamics and the time-local generator can be calculated explicitly. It is demonstrated that introducing a small parameter in this simple example allows one to reproduce some nonperturbative phenomena that occur in more realistic models. In addition, a special case of fermionic dynamics is considered, and it is shown that one can actually find families of moments whose dynamics is linear but satisfies non-Markovian equations.
@article{TM_2021_313_a20,
     author = {A. E. Teretenkov},
     title = {An {Example} of {Explicit} {Generators} of {Local} and {Nonlocal} {Quantum} {Master} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a20/}
}
TY  - JOUR
AU  - A. E. Teretenkov
TI  - An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 253
EP  - 262
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a20/
LA  - ru
ID  - TM_2021_313_a20
ER  - 
%0 Journal Article
%A A. E. Teretenkov
%T An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 253-262
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a20/
%G ru
%F TM_2021_313_a20
A. E. Teretenkov. An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 253-262. http://geodesic.mathdoc.fr/item/TM_2021_313_a20/

[1] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl

[2] Argyres P.N., Kelley P.L., “Theory of spin resonance and relaxation”, Phys. Rev., 134:1A (1964), A98–A111 | DOI

[3] Bai K., Peng Z., Luo H.-G., An J.-H., “Retrieving ideal precision in noisy quantum optical metrology”, Phys. Rev. Lett., 123:4 (2019), 040402 | DOI

[4] Matrix Norms and Their Applications, Oper. Theory: Adv. Appl., 36, Birkhäuser, Basel, 1988 | MR | Zbl

[5] N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics, North-Holland, Amsterdam, 1962 | MR | MR

[6] Breuer H.-P., “Non-Markovian generalization of the Lindblad theory of open quantum systems”, Phys. Rev. A, 75:2 (2007), 022103 | DOI | MR

[7] Breuer H.-P., Kappler B., Petruccione F., “Stochastic wave-function method for non-Markovian quantum master equations”, Phys. Rev. A, 59:2 (1999), 1633–1643 | DOI

[8] Breuer H.-P., Laine E.-M., Piilo J., “Measure for the degree of non-Markovian behavior of quantum processes in open systems”, Phys. Rev. Lett., 103:21 (2009), 210401 | DOI | MR

[9] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[10] Burgarth D., Chiribella G., Giovannetti V., Perinotti P., Yuasa K., “Ergodic and mixing quantum channels in finite dimensions”, New J. Phys., 15:7 (2013), 073045 | DOI | MR | Zbl

[11] Burton T.A., Volterra integral and differential equations, Elsevier, Amsterdam, 2005 | MR | Zbl

[12] Chruściński D., “Introduction to non-Markovian evolution of $n$-level quantum systems”, Open quantum systems: A mathematical perspective, ed. by D. Bahns, A. Pohl, I. Witt, Birkhäuser, Cham, 2019, 55–76 | DOI | MR | Zbl

[13] Davies E.B., Quantum theory of open systems, Acad. Press, London, 1976 | MR | Zbl

[14] Filippov S.N., Chruściński D., “Time deformations of master equations”, Phys. Rev. A, 98:2 (2018), 022123 | DOI

[15] Filippov S.N., Glinov A.N., Leppäjärvi L., “Phase covariant qubit dynamics and divisibility”, Lobachevskii J. Math., 41:4 (2020), 617–630 | DOI | MR | Zbl

[16] Gardiner C.W., Zoller P., Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, Springer, Berlin, 2004 | MR | Zbl

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Univ. Press, Baltimore, MD, 1996 | MR | Zbl

[18] Gorini V., Kossakowski A., Sudarshan E.C.G., “Completely positive dynamical semigroups of $N$-level systems”, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR | Zbl

[19] Hall M.J.W., Cresser J.D., Li L., Andersson E., “Canonical form of master equations and characterization of non-Markovianity”, Phys. Rev. A, 89:4 (2014), 042120 | DOI

[20] Holevo A.S., Giovannetti V., “Quantum channels and their entropic characteristics”, Rep. Prog. Phys., 75:4 (2012), 046001 | DOI | MR

[21] Jang S., Cao J., Silbey R.J., “Fourth-order quantum master equation and its Markovian bath limit”, J. Chem. Phys., 116:7 (2002), 2705–2717 | DOI

[22] Kolli A., O'Reilly E.J., Scholes G.D., Olaya-Castro A., “The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae”, J. Chem. Phys., 137:17 (2012), 174109 | DOI

[23] Kossakowski A., Rebolledo R., “On non-Markovian time evolution in open quantum systems”, Open Syst. Inf. Dyn., 14:3 (2007), 265–274 | DOI | MR | Zbl

[24] Kubo R., “Stochastic Liouville equations”, J. Math. Phys., 4:2 (1963), 174–183 | DOI | MR | Zbl

[25] Li L., Hall M.J.W., Wiseman H.M., “Concepts of quantum non-Markovianity: A hierarchy”, Phys. Rep., 759 (2018), 1–51 | DOI | MR | Zbl

[26] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[27] Lo Gullo N., Sinayskiy I., Busch Th., Petruccione F., Non-Markovianity criteria for open system dynamics, E-print, 2014, arXiv: 1401.1126 [quant-ph]

[28] Luchnikov I.A., Vintskevich S.V., Ouerdane H., Filippov S.N., “Simulation complexity of open quantum dynamics: Connection with tensor networks”, Phys. Rev. Lett., 122:16 (2019), 160401 | DOI

[29] Milz S., Kim M.S., Pollock F.A., Modi K., “Completely positive divisibility does not mean Markovianity”, Phys. Rev. Lett., 123:4 (2019), 040401 | DOI | MR

[30] Mohseni M., Rebentrost P., Lloyd S., Aspuru-Guzik A., “Environment-assisted quantum walks in photosynthetic energy transfer”, J. Chem. Phys., 129:17 (2008), 174106 | DOI

[31] Nakajima S., “On quantum theory of transport phenomena: Steady diffusion”, Prog. Theor. Phys., 20:6 (1958), 948–959 | DOI | MR | Zbl

[32] Iu. A. Nosal' and A. E. Teretenkov, “Exact dynamics of moments and correlation functions for GKSL fermionic equations of Poisson type”, Math. Notes, 108:5–6 (2020), 911–915 | DOI | MR | Zbl

[33] Pechen A.N., Volovich I.V., “Quantum multipole noise and generalized quantum stochastic equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:4 (2002), 441–464 | DOI | MR | Zbl

[34] Plenio M.B., Almeida J., Huelga S.F., “Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence”, J. Chem. Phys., 139:23 (2013), 235102 | DOI

[35] Plenio M.B., Huelga S.F., “Dephasing-assisted transport: Quantum networks and biomolecules”, New J. Phys., 10:11 (2008), 113019 | DOI

[36] Rivas Á., Huelga S.F., Plenio M.B., “Quantum non-Markovianity: Characterization, quantification and detection”, Rep. Prog. Phys., 77:9 (2014), 094001 | DOI | MR

[37] Shibata F., Takahashi Y., Hashitsume N., “A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations”, J. Stat. Phys., 17:4 (1977), 171–187 | DOI | MR

[38] Singh N., Brumer P., “Efficient computational approach to the non-Markovian second order quantum master equation: Electronic energy transfer in model photosynthetic systems”, Mol. Phys., 110:15–16 (2012), 1815–1828 | DOI

[39] Siudzińska K., Chruściński D., “Memory kernel approach to generalized Pauli channels: Markovian, semi-Markov, and beyond”, Phys. Rev. A, 96:2 (2017), 022129 | DOI | MR

[40] Strasberg P., Esposito M., “Response functions as quantifiers of non-Markovianity”, Phys. Rev. Lett., 121:4 (2018), 040601 | DOI

[41] L. A. Takhtajan, Quantum Mechanics for Mathematicians, Grad. Stud. Math., 95, Am. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[42] A. E. Teretenkov, “Quadratic fermionic dynamics with dissipation”, Math. Notes, 102:5–6 (2017), 846–853 | DOI | MR | Zbl

[43] A. E. Teretenkov, “Pseudomode approach and vibronic non-Markovian phenomena in light-harvesting complexes”, Proc. Steklov Inst. Math., 306 (2019), 242–256 | DOI | MR | Zbl

[44] A. E. Teretenkov, “Dynamics of moments for quadratic GKSL generators”, Math. Notes, 106:1–2 (2019), 151–155 | DOI | MR | Zbl

[45] Teretenkov A.E., “Irreversible quantum evolution with quadratic generator: Review”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), 1930001 | DOI | MR | Zbl

[46] A. E. Teretenkov, “Dynamics of moments of arbitrary order for stochastic Poisson compressions”, Math. Notes, 107:3–4 (2020), 695–698 | DOI | MR | Zbl

[47] Teretenkov A.E., Non-perturbative effects in corrections to quantum master equation arising in Bogolubov–Van Hove limit, E-print, 2020, arXiv: 2008.02820 [quant-ph]

[48] Timm C., “Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order”, Phys. Rev. B, 83:11 (2011), 115416 | DOI

[49] Trushechkin A., “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101 | DOI

[50] Trushechkin A.S., “Higher-order corrections to the Redfield equation with respect to the system-bath coupling based on the hierarchical equations of motion”, Lobachevskii J. Math., 40:10 (2019), 1606–1618 | DOI | MR | Zbl

[51] Vacchini B., “Generalized master equations leading to completely positive dynamics”, Phys. Rev. Lett., 117:23 (2016), 230401 | DOI | MR

[52] Van Hove L., “Quantum-mechanical perturbations giving rise to a statistical transport equation”, Physica, 21:1–5 (1954), 517–540 | MR

[53] Van Kampen N.G., “A cumulant expansion for stochastic linear differential equations. I, II”, Physica, 74:2 (1974), 215–238, 239–247 | DOI | MR

[54] Wolf M.M., Quantum channels operations: Guided tour, Preprint, Tech. Univ. München, Munich, 2012 https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

[55] Wolf M.M., Eisert J., Cubitt T.S., Cirac J.I., “Assessing non-Markovian quantum dynamics”, Phys. Rev. Lett., 101:15 (2008), 150402 | DOI | MR | Zbl

[56] Wudarski F.A., Należyty P., Sarbicki G., Chruściński D., “Admissible memory kernels for random unitary qubit evolution”, Phys. Rev. A, 91:4 (2015), 042105 | DOI | MR

[57] Zwanzig R., “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR