Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a2, author = {L. A. Borisov and Yu. N. Orlov}, title = {On the {Inversion} {Formula} of {Linear} {Quantization} and the {Evolution} {Equation} for the {Wigner} {Function}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {23--32}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a2/} }
TY - JOUR AU - L. A. Borisov AU - Yu. N. Orlov TI - On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 23 EP - 32 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a2/ LA - ru ID - TM_2021_313_a2 ER -
%0 Journal Article %A L. A. Borisov %A Yu. N. Orlov %T On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 23-32 %V 313 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_313_a2/ %G ru %F TM_2021_313_a2
L. A. Borisov; Yu. N. Orlov. On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 23-32. http://geodesic.mathdoc.fr/item/TM_2021_313_a2/
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, J. Wiley Sons, New York, 1972 | MR | Zbl
[2] F. A. Berezin, “Non-Wiener functional integrals”, Theor. Math. Phys., 6:2 (1971), 141–155 | DOI | MR | Zbl
[3] Berezin F.A., “General concept of quantization”, Commun. Math. Phys., 40 (1975), 153–174 | DOI | MR | Zbl
[4] N. N. Bogolubov and N. N. Bogolubov Jr., Introduction to Quantum Statistical Mechanics, World Scientific, Hackensack, NJ, 2010 | MR | MR | Zbl
[5] L. A. Borisov and Yu. N. Orlov, “Analyzing the dependence of finite-fold approximations of the harmonic oscillator equilibrium density matrix and of the Wigner function on the quantization prescription”, Theor. Math. Phys., 184:1 (2015), 986–995 | DOI | MR | Zbl
[6] Borisov L.A., Orlov Yu.N., “Generalized evolution equation of Wigner function for an arbitrary linear quantization”, Lobachevskii J. Math., 42:1 (2021), 63–69 | DOI | MR | Zbl
[7] Born M., Jordan P., “Zur Quantenmechanik”, Z. Phys., 34 (1925), 858–888 | DOI | Zbl
[8] Case W.B., “Wigner functions and Weyl transforms for pedestrians”, Amer. J. Phys., 76:10 (2008), 937–946 | DOI
[9] Costa Dias N., Prata J.N., “Deformation quantization and Wigner function”, Mod. Phys. Lett. A, 20:17–18 (2015), 1371–1385 | MR
[10] R. P. Gaĭda, “Quasirelativistic systems of interacting particles”, Sov. J. Part. Nucl., 13:2 (1982), 179–205
[11] Mancini S., Man'ko V.I., Tombesi P., “Different realizations of the tomographic principle in quantum state measurement”, J. Mod. Opt., 44:11–12 (1997), 2281–2292 | DOI | MR | Zbl
[12] Mancini S., Man'ko V.I., Tombesi P., “Classical-like description of quantum dynamics by means of symplectic tomography”, Found. Phys., 27:6 (1997), 801–824 | DOI | MR
[13] Moyal J.E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[14] Nasiri S., Bahrami S., “Reality of the Wigner functions and quantization”, Res. Lett. Phys., 2009 (2009), 298790 | DOI
[15] Von Neumann J., Mathematische Grundlagen der Quantenmechanik, J. Springer, Berlin, 1932 | MR | Zbl
[16] Orlov Yu.N., Osnovy kvantovaniya vyrozhdennykh dinamicheskikh sistem, MFTI, M., 2004
[17] Orlov Yu.N., Pavlotsky I.P., “Quantum BBGKY-hierarchies and Wigner's equation in postgalilean approximation”, Physica A, 158:2 (1989), 607–618 | DOI | MR
[18] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | MR | Zbl
[19] Pavlotskii I.P., Vvedenie v slaborelyativistskuyu statisticheskuyu mekhaniku, IPM AN SSSR, M., 1987
[20] Weyl H., Gruppentheorie und Quantenmechanik, Hirzel, Leipzig, 1931 | MR
[21] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40:5 (1932), 749–759 | DOI