On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inversion problem for linear quantization defined by an integral transformation relating the matrix of a quantum operator to its classical symbol. For an arbitrary linear quantization, we construct evolution equations for the density matrix and the Wigner function. It is shown that the Weyl quantization is the only one for which the evolution equation of the Wigner function is free of a quasi-probability source, which distinguishes this quantization as the only physically adequate one in the class under consideration. As an example, we give an exact stationary solution for the Wigner function of a harmonic oscillator with an arbitrary linear quantization, and construct a sequence of quantizations that approximate the Weyl quantization and tend to it in the weak sense so that the Wigner function remains positive definite.
Keywords: approximating quantization, Wigner function, stationary solution.
Mots-clés : inverse quantization, evolution equation
@article{TM_2021_313_a2,
     author = {L. A. Borisov and Yu. N. Orlov},
     title = {On the {Inversion} {Formula} of {Linear} {Quantization} and the {Evolution} {Equation} for the {Wigner} {Function}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a2/}
}
TY  - JOUR
AU  - L. A. Borisov
AU  - Yu. N. Orlov
TI  - On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 23
EP  - 32
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a2/
LA  - ru
ID  - TM_2021_313_a2
ER  - 
%0 Journal Article
%A L. A. Borisov
%A Yu. N. Orlov
%T On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 23-32
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a2/
%G ru
%F TM_2021_313_a2
L. A. Borisov; Yu. N. Orlov. On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 23-32. http://geodesic.mathdoc.fr/item/TM_2021_313_a2/

[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, J. Wiley Sons, New York, 1972 | MR | Zbl

[2] F. A. Berezin, “Non-Wiener functional integrals”, Theor. Math. Phys., 6:2 (1971), 141–155 | DOI | MR | Zbl

[3] Berezin F.A., “General concept of quantization”, Commun. Math. Phys., 40 (1975), 153–174 | DOI | MR | Zbl

[4] N. N. Bogolubov and N. N. Bogolubov Jr., Introduction to Quantum Statistical Mechanics, World Scientific, Hackensack, NJ, 2010 | MR | MR | Zbl

[5] L. A. Borisov and Yu. N. Orlov, “Analyzing the dependence of finite-fold approximations of the harmonic oscillator equilibrium density matrix and of the Wigner function on the quantization prescription”, Theor. Math. Phys., 184:1 (2015), 986–995 | DOI | MR | Zbl

[6] Borisov L.A., Orlov Yu.N., “Generalized evolution equation of Wigner function for an arbitrary linear quantization”, Lobachevskii J. Math., 42:1 (2021), 63–69 | DOI | MR | Zbl

[7] Born M., Jordan P., “Zur Quantenmechanik”, Z. Phys., 34 (1925), 858–888 | DOI | Zbl

[8] Case W.B., “Wigner functions and Weyl transforms for pedestrians”, Amer. J. Phys., 76:10 (2008), 937–946 | DOI

[9] Costa Dias N., Prata J.N., “Deformation quantization and Wigner function”, Mod. Phys. Lett. A, 20:17–18 (2015), 1371–1385 | MR

[10] R. P. Gaĭda, “Quasirelativistic systems of interacting particles”, Sov. J. Part. Nucl., 13:2 (1982), 179–205

[11] Mancini S., Man'ko V.I., Tombesi P., “Different realizations of the tomographic principle in quantum state measurement”, J. Mod. Opt., 44:11–12 (1997), 2281–2292 | DOI | MR | Zbl

[12] Mancini S., Man'ko V.I., Tombesi P., “Classical-like description of quantum dynamics by means of symplectic tomography”, Found. Phys., 27:6 (1997), 801–824 | DOI | MR

[13] Moyal J.E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[14] Nasiri S., Bahrami S., “Reality of the Wigner functions and quantization”, Res. Lett. Phys., 2009 (2009), 298790 | DOI

[15] Von Neumann J., Mathematische Grundlagen der Quantenmechanik, J. Springer, Berlin, 1932 | MR | Zbl

[16] Orlov Yu.N., Osnovy kvantovaniya vyrozhdennykh dinamicheskikh sistem, MFTI, M., 2004

[17] Orlov Yu.N., Pavlotsky I.P., “Quantum BBGKY-hierarchies and Wigner's equation in postgalilean approximation”, Physica A, 158:2 (1989), 607–618 | DOI | MR

[18] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | MR | Zbl

[19] Pavlotskii I.P., Vvedenie v slaborelyativistskuyu statisticheskuyu mekhaniku, IPM AN SSSR, M., 1987

[20] Weyl H., Gruppentheorie und Quantenmechanik, Hirzel, Leipzig, 1931 | MR

[21] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40:5 (1932), 749–759 | DOI