Characterization of Bistochastic Kadison--Schwarz Operators on $M_2(\mathbb C)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 178-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize bistochastic Kadison–Schwarz operators acting on $M_2(\mathbb C)$. The obtained characterization allows us to find positive operators that are not Kadison–Schwarz ones. Moreover, we provide several examples of Kadison–Schwarz operators which are not completely positive.
Keywords: bistochastic mapping, Kadison–Schwarz operator, complete positivity.
@article{TM_2021_313_a15,
     author = {Farrukh Mukhamedov and Hasan Ak{\i}n},
     title = {Characterization of {Bistochastic} {Kadison--Schwarz} {Operators} on $M_2(\mathbb C)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {178--191},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a15/}
}
TY  - JOUR
AU  - Farrukh Mukhamedov
AU  - Hasan Akın
TI  - Characterization of Bistochastic Kadison--Schwarz Operators on $M_2(\mathbb C)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 178
EP  - 191
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a15/
LA  - ru
ID  - TM_2021_313_a15
ER  - 
%0 Journal Article
%A Farrukh Mukhamedov
%A Hasan Akın
%T Characterization of Bistochastic Kadison--Schwarz Operators on $M_2(\mathbb C)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 178-191
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a15/
%G ru
%F TM_2021_313_a15
Farrukh Mukhamedov; Hasan Akın. Characterization of Bistochastic Kadison--Schwarz Operators on $M_2(\mathbb C)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 178-191. http://geodesic.mathdoc.fr/item/TM_2021_313_a15/

[1] Bengtsson I., Życzkowski K., Geometry of quantum states: An introduction to quantum entanglement, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[2] Bhatia R., Positive definite matrices, Princeton Univ. Press, Princeton, NJ, 2009 | MR

[3] Choi M.-D., “Completely positive linear maps on complex matrices”, Linear Algebra Appl., 10 (1975), 285–290 | DOI | MR | Zbl

[4] Chruściński D., “Quantum-correlation breaking channels, quantum conditional probability and Perron–Frobenius theory”, Phys. Lett. A, 377:8 (2013), 606–611 | DOI | MR | Zbl

[5] Chruściński D., “A class of symmetric Bell diagonal entanglement witnesses—a geometric perspective”, J. Phys. A: Math. Theor., 47:42 (2014), 424033 | DOI | MR | Zbl

[6] Chruściński D., “On Kossakowski construction of positive maps on matrix algebras”, Open Syst. Inf. Dyn., 21:3 (2014), 1450001 | DOI | MR | Zbl

[7] Chruściński D., Kossakowski A., “Divisibility of dynamical maps with time independent invariant state”, Open Syst. Inf. Dyn., 26:4 (2019), 1950019 | DOI | MR | Zbl

[8] Chruściński D., Mukhamedov F., “Dissipative generators, divisible dynamical maps, and the Kadison–Schwarz inequality”, Phys. Rev. A, 100:5 (2019), 052120 | DOI | MR

[9] Chruściński D., Mukhamedov F., Hajji M.A., “On Kadison–Schwarz approximation to positive maps”, Open Syst. Inf. Dyn., 27:3 (2020), 2050016 | DOI | MR

[10] Chruściński D., Sarbicki G., “Exposed positive maps in $M_4(\mathbb C)$”, Open Syst. Inf. Dyn., 19:3 (2012), 1250017 | DOI | MR | Zbl

[11] Chruściński D., Sarbicki G., “Entanglement witnesses: Construction, analysis and classification”, J. Phys. A.: Math. Theor., 47:48 (2014), 483001 | DOI | MR | Zbl

[12] N. N. Ganikhodzhaev and F. M. Mukhamedov, “Ergodic properties of quantum quadratic stochastic processes defined on von Neumann algebras”, Russ. Math. Surv., 53:6 (1998), 1350–1351 | DOI | MR | Zbl

[13] Ganikhodzhaev R., Mukhamedov F., Rozikov U., “Quadratic stochastic operators and processes: results and open problems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14:2 (2011), 279–335 | DOI | MR | Zbl

[14] Groh U., “Uniform ergodic theorems for identity preserving Schwarz maps on $W^*$-algebras”, J. Oper. Theory, 11 (1984), 395–404 | MR | Zbl

[15] Ha K.-C., “Entangled states with strong positive partial transpose”, Phys. Rev. A, 81:6 (2010), 064101 | DOI

[16] Ha K.-C., Kye S.-H., “Entanglement witnesses arising from exposed positive linear maps”, Open Syst. Inf. Dyn., 18:4 (2011), 323–337 | DOI | MR | Zbl

[17] Horodecki M., Horodecki P., Horodecki R., “Separability of mixed states: Necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1996), 1–8 | DOI | MR | Zbl

[18] Horodecki R., Horodecki P., Horodecki M., Horodecki K., “Quantum entanglement”, Rev. Mod. Phys., 81:2 (2009), 865–942 | DOI | MR | Zbl

[19] King C., Ruskai M.B., “Minimal entropy of states emerging from noisy quantum channels”, IEEE Trans. Inf. Theory, 47:1 (2001), 192–209 | DOI | MR | Zbl

[20] Kossakowski A., “A class of linear positive maps in matrix algebras”, Open Syst. Inf. Dyn., 10:3 (2003), 213–220 | DOI | MR | Zbl

[21] Majewski W.A., “On non-completely positive quantum dynamical maps on spin chains”, J. Phys. A: Math. Theor., 40:38 (2007), 11539–11545 | DOI | MR | Zbl

[22] Majewski W.A., “On positive decomposable maps”, Rep. Math. Phys., 59:3 (2007), 289–298 | DOI | MR | Zbl

[23] Majewski W.A., “On the structure of positive maps: Finite-dimensional case”, J. Math. Phys., 53:2 (2012), 023515 | DOI | MR | Zbl

[24] Majewski W.A., Marciniak M., “On a characterization of positive maps”, J. Phys. A: Math. Gen., 34:29 (2001), 5863–5874 | DOI | MR | Zbl

[25] Mukhamedov F., “On pure quasi-quantum quadratic operators of $\mathbb M_2(\mathbb C)$. II”, Open Syst. Inf. Dyn., 22:4 (2015), 1550024 | DOI | MR | Zbl

[26] Mukhamedov F., “On circle preserving quadratic operators”, Bull. Malays. Math. Sci. Soc., 40:2 (2017), 765–782 | DOI | MR | Zbl

[27] Mukhamedov F., Abduganiev A., “On the description of bistochastic Kadison–Schwarz operators on $\mathbb M_2(\mathbb C)$”, Open Syst. Inf. Dyn., 17:3 (2010), 245–253 | DOI | MR | Zbl

[28] Mukhamedov F., Abduganiev A., “On Kadison–Schwarz type quantum quadratic operators on $\mathbb M_2(\mathbb C)$”, Abstr. Appl. Anal., 2013 (2013), 278606 | MR | Zbl

[29] Mukhamedov F., Abduganiev A., “On pure quasi-quantum quadratic operators of $\mathbb M_2(\mathbb C)$”, Open Syst. Inf. Dyn., 20:4 (2013), 1350018 | DOI | MR | Zbl

[30] Mukhamedov F., Akın H., Temir S., Abduganiev A., “On quantum quadratic operators of $\mathbb M_2(\mathbb C)$ and their dynamics”, J. Math. Anal. Appl., 376:2 (2011), 641–655 | DOI | MR | Zbl

[31] Mukhamedov F., Ganikhodjaev N., Quantum quadratic operators and processes, Lect. Notes Math., 2133, Springer, Cham, 2015 | DOI | MR | Zbl

[32] Mukhamedov F., Syam S.M., Almazrouei S.A.Y., “Few remarks on quasi quantum quadratic operators on $\mathbb M_2(\mathbb C)$”, Open Syst. Inf. Dyn., 27:2 (2020), 2050006 | DOI | MR | Zbl

[33] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[34] Ohya M., Petz D., Quantum entropy and its use, Springer, Berlin, 1993 | MR | Zbl

[35] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011 | MR | Zbl

[36] A. N. Pechen and N. B. Il'in, “On extrema of the objective functional for short-time generation of single-qubit quantum gates”, Izv. Math., 80:6 (2016), 1200–1212 | DOI | MR | Zbl

[37] Pechen A.N., Tannor D.J., “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI

[38] Robertson A.G., “Schwarz inequalities and the decomposition of positive maps on $C^*$-algebras”, Math. Proc. Cambridge Philos. Soc., 94 (1983), 291–296 | DOI | MR | Zbl

[39] Ruskai M.B., Szarek S., Werner E., “An analysis of completely-positive trace-preserving maps on $\mathcal M_2$”, Linear Algebra Appl., 347:1–3 (2002), 159–187 | DOI | MR | Zbl