On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 161-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-level open quantum system whose dynamics is governed by the Gorini–Kossakowski–Sudarshan–Lindblad equation with Hamiltonian and dissipation superoperator depending, respectively, on coherent and incoherent controls. Results about reachability, controllability, and minimum-time control are obtained in terms of the Bloch parametrization. First, we consider the case when the zero coherent and incoherent controls satisfy the Pontryagin maximum principle in the class of piecewise continuous controls. Second, for zero coherent control and for incoherent control lying in the class of constant functions, the reachability and controllability sets of the system are exactly described and some analytical results on the minimum-time control are found. Third, we consider a series of increasing values of the final time and the corresponding classes of controls with zero incoherent control and with coherent control equal to zero until a switching time instant and to a cosine function after it. The corresponding reachable points in the Bloch ball are numerically obtained and visualized. Fourth, a known method for estimating reachable sets is adapted and used to analyze the situation where the zero coherent and incoherent controls satisfy the Pontryagin maximum principle in the class of piecewise continuous controls while, as shown numerically, are not optimal.
Keywords: quantum control, open quantum system, coherent control, incoherent control, reachable sets, controllability sets, minimum-time control, optimization.
@article{TM_2021_313_a14,
     author = {Oleg V. Morzhin and Alexander N. Pechen},
     title = {On {Reachable} and {Controllability} {Sets} for {Minimum-Time} {Control} of an {Open} {Two-Level} {Quantum} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {161--177},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a14/}
}
TY  - JOUR
AU  - Oleg V. Morzhin
AU  - Alexander N. Pechen
TI  - On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 161
EP  - 177
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a14/
LA  - ru
ID  - TM_2021_313_a14
ER  - 
%0 Journal Article
%A Oleg V. Morzhin
%A Alexander N. Pechen
%T On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 161-177
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a14/
%G ru
%F TM_2021_313_a14
Oleg V. Morzhin; Alexander N. Pechen. On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 161-177. http://geodesic.mathdoc.fr/item/TM_2021_313_a14/

[1] Basilewitsch D., Koch C.P., Reich D.M., “Quantum optimal control for mixed state squeezing in cavity optomechanics”, Adv. Quantum Technol., 2:3–4 (2019), 1800110 | DOI

[2] O. V. Baturina and O. V. Morzhin, “Optimal control of the spin system on a basis of the global improvement method”, Autom. Remote Control, 72:6 (2011), 1213–1220 | DOI | MR | Zbl

[3] Bertsekas D.P., Nonlinear programming, 3rd ed., Athena Scientific, Belmont, 2016 | MR | Zbl

[4] Blok M.S., Bonato C., Markham M.L., Twitchen D.J., Dobrovitski V.V., Hanson R., “Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback”, Nature Phys., 10:3 (2014), 189–193 | DOI

[5] Boussaïd N., Caponigro M., Chambrion T., “Small time reachable set of bilinear quantum systems”, 51st IEEE Conf. on Decision and Control (2012), IEEE, 2012, 1083–1087

[6] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, Oxford, 2007 | MR | Zbl

[7] Brif C., Chakrabarti R., Rabitz H., “Control of quantum phenomena: Past, present and future”, New J. Phys., 12:7 (2010), 075008 | DOI | MR | Zbl

[8] A. G. Butkovskiy and Yu. I. Samoilenko, Control of Quantum-Mechanical Processes and Systems, Kluwer, Dordrecht, 1990 | MR | Zbl

[9] F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1993

[10] D'Alessandro D., “Topological properties of reachable sets and the control of quantum bits”, Syst. Control Lett., 41:3 (2000), 213–221 | DOI | MR | Zbl

[11] D'Alessandro D., Introduction to quantum control and dynamics, Chapman Hall/CRC, Boca Raton, 2008 | MR | Zbl

[12] Dann R., Tobalina A., Kosloff R., “Fast route to equilibration”, Phys. Rev. A, 101:5 (2020), 052102 | DOI | MR

[13] V. F. Demyanov and A. M. Rubinov, Approximate Methods in Optimization Problems, Am. Elsevier Publ. Co., New York, 1970 | MR | Zbl

[14] Dong D., Chen C., Tarn T.-J., Pechen A., Rabitz H., “Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning”, IEEE Trans. Syst. Man Cybern. B: Cybern., 38:4 (2008), 957–962 | DOI | MR

[15] Dong D., Zhang C., Rabitz H., Pechen A., Tarn T.-J., “Incoherent control of locally controllable quantum systems”, J. Chem. Phys., 129:15 (2008), 154103 | DOI

[16] Gabasov R., Kirillova F.M., “High order necessary conditions for optimality”, SIAM J. Control, 10 (1972), 127–168 | DOI | MR | Zbl

[17] R. Gabasov and F. M. Kirillova, M. Dekker, New York, 1976 | Zbl

[18] R. V. Gamkrelidze, “History of the discovery of the Pontryagin maximum principle”, Proc. Steklov Inst. Math., 304 (2019), 1–7 | DOI | MR | Zbl

[19] Glaser S.J. et al., “Training Schrödinger's cat: Quantum optimal control: Strategic report on current status, visions and goals for research in Europe”, Eur. Phys. J. D, 69:12 (2015), 279 | DOI

[20] Kakuyanagi K., Baba T., Matsuzaki Y., Nakano H., Saito S., Semba K., “Observation of quantum Zeno effect in a superconducting flux qubit”, New J. Phys., 17:6 (2015), 063035 | DOI

[21] Koch C.P., “Controlling open quantum systems: Tools, achievements, and limitations”, J. Phys.: Condens. Matter, 28:21 (2016), 213001 | DOI

[22] Kurzhanski A.B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl

[23] Li J., Lu D., Luo Z., Laflamme R., Peng X., Du J., “Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering”, Phys. Rev. A, 94:1 (2016), 012312 | DOI

[24] Lucas F., Hornberger K., “Incoherent control of the retinal isomerization in rhodopsin”, Phys. Rev. Lett., 113:5 (2014), 058301 | DOI

[25] Matplotlib: Visualization with Python https://matplotlib.org/

[26] Mesterton-Gibbons M., A primer on the calculus of variations and optimal control theory, Stud. Math. Lib., 50, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[27] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V.J., Rabitz H., “Why is chemical synthesis and property optimization easier than expected?”, Phys. Chem. Chem. Phys., 13:21 (2011), 10048–10070 | DOI

[28] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russ. Math. Surv., 74:5 (2019), 851–908 | DOI | MR | Zbl

[29] Morzhin O.V., Pechen A.N., “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019), 1532–1548 | DOI | MR | Zbl

[30] O. V. Morzhin and A. N. Pechen, “Maximization of the Uhlmann–Jozsa fidelity for an open two-level quantum system with coherent and incoherent controls”, Phys. Part. Nucl., 51:4 (2020), 464–469 | DOI

[31] Morzhin O.V., Pechen A.N., “Machine learning for finding suboptimal final times and coherent and incoherent controls for an open two-level quantum system”, Lobachevskii J. Math., 41:12 (2020), 2353–2368 | DOI | MR | Zbl

[32] Morzhin O.V., Pechen A.N., “Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls”, Int. J. Theor. Phys., 60:2 (2021), 576–584 ; arXiv: 1909.09400 [quant-ph] | DOI | MR

[33] Morzhin O.V., Pechen A.N., “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls”, AIP Conf. Proc. (to appear)

[34] O. V. Morzhin and A. I. Tyatyushkin, “An algorithm of the method of sections and program tools for constructing reachable sets of nonlinear control systems”, J. Comput. Syst. Sci. Int., 47:1 (2008), 1–7 | DOI | MR

[35] M. S. Nikol'skii, “Approximation of the attainability set for a controlled process”, Math. Notes, 41:1 (1987), 44–48 | DOI

[36] Pechen A., “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI

[37] Pechen A., Il'in N., Shuang F., Rabitz H., “Quantum control by von Neumann measurements”, Phys. Rev. A, 74:5 (2006), 052102 | DOI | MR

[38] Pechen A., Rabitz H., “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102 | DOI | MR

[39] A. N. Pechen and H. Rabitz, “Incoherent control of open quantum systems”, J. Math. Sci., 199:6 (2014), 695–701 | DOI | MR | Zbl

[40] Pechen A., Trushechkin A., “Measurement-assisted Landau–Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316 | DOI

[41] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl

[42] Saff E.B., Kuijlaars A.B.J., “Distributing many points on a sphere”, Math. Intell., 19:1 (1997), 5–11 | DOI | MR | Zbl

[43] SciPy.org: Find the global minimum of a function using Dual Annealing https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html

[44] SciPy.org: Integrate a system of ordinary differential equations https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

[45] Shackerley-Bennett U., Pitchford A., Genoni M.G., Serafini A., Burgarth D.K., “The reachable set of single-mode quadratic Hamiltonians”, J. Phys. A: Math. Theor., 50:15 (2017), 155203 | DOI | MR | Zbl

[46] Shuang F., Pechen A., Ho T.-S., Rabitz H., “Observation-assisted optimal control of quantum dynamics”, J. Chem. Phys., 126:13 (2007), 134303 | DOI

[47] Tannor D.J., Introduction to quantum mechanics: A time-dependent perspective, Univ. Sci. Books, Sausilito, CA, 2007

[48] Tsallis C., Stariolo D.A., “Generalized simulated annealing”, Physica A, 233:1–2 (1996), 395–406 | DOI | MR

[49] A. I. Tyatyushkin and O. V. Morzhin, “Numerical investigation of attainability sets of nonlinear controlled differential systems”, Autom. Remote Control, 72:6 (2011), 1291–1300 | DOI | MR | Zbl

[50] Wu R., Pechen A., Brif C., Rabitz H., “Controllability of open quantum systems with Kraus-map dynamics”, J. Phys. A: Math. Theor., 40:21 (2007), 5681–5693 | DOI | MR | Zbl

[51] Xiang Y., Gong X.G., “Efficiency of generalized simulated annealing”, Phys. Rev. E, 62:3 (2000), 4473–4476 | DOI

[52] Yuan H., “Reachable set of open quantum dynamics for a single spin in Markovian environment”, Automatica, 49:4 (2013), 955–959 | DOI | MR | Zbl