Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a14, author = {Oleg V. Morzhin and Alexander N. Pechen}, title = {On {Reachable} and {Controllability} {Sets} for {Minimum-Time} {Control} of an {Open} {Two-Level} {Quantum} {System}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {161--177}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a14/} }
TY - JOUR AU - Oleg V. Morzhin AU - Alexander N. Pechen TI - On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 161 EP - 177 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a14/ LA - ru ID - TM_2021_313_a14 ER -
%0 Journal Article %A Oleg V. Morzhin %A Alexander N. Pechen %T On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 161-177 %V 313 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_313_a14/ %G ru %F TM_2021_313_a14
Oleg V. Morzhin; Alexander N. Pechen. On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 161-177. http://geodesic.mathdoc.fr/item/TM_2021_313_a14/
[1] Basilewitsch D., Koch C.P., Reich D.M., “Quantum optimal control for mixed state squeezing in cavity optomechanics”, Adv. Quantum Technol., 2:3–4 (2019), 1800110 | DOI
[2] O. V. Baturina and O. V. Morzhin, “Optimal control of the spin system on a basis of the global improvement method”, Autom. Remote Control, 72:6 (2011), 1213–1220 | DOI | MR | Zbl
[3] Bertsekas D.P., Nonlinear programming, 3rd ed., Athena Scientific, Belmont, 2016 | MR | Zbl
[4] Blok M.S., Bonato C., Markham M.L., Twitchen D.J., Dobrovitski V.V., Hanson R., “Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback”, Nature Phys., 10:3 (2014), 189–193 | DOI
[5] Boussaïd N., Caponigro M., Chambrion T., “Small time reachable set of bilinear quantum systems”, 51st IEEE Conf. on Decision and Control (2012), IEEE, 2012, 1083–1087
[6] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, Oxford, 2007 | MR | Zbl
[7] Brif C., Chakrabarti R., Rabitz H., “Control of quantum phenomena: Past, present and future”, New J. Phys., 12:7 (2010), 075008 | DOI | MR | Zbl
[8] A. G. Butkovskiy and Yu. I. Samoilenko, Control of Quantum-Mechanical Processes and Systems, Kluwer, Dordrecht, 1990 | MR | Zbl
[9] F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1993
[10] D'Alessandro D., “Topological properties of reachable sets and the control of quantum bits”, Syst. Control Lett., 41:3 (2000), 213–221 | DOI | MR | Zbl
[11] D'Alessandro D., Introduction to quantum control and dynamics, Chapman Hall/CRC, Boca Raton, 2008 | MR | Zbl
[12] Dann R., Tobalina A., Kosloff R., “Fast route to equilibration”, Phys. Rev. A, 101:5 (2020), 052102 | DOI | MR
[13] V. F. Demyanov and A. M. Rubinov, Approximate Methods in Optimization Problems, Am. Elsevier Publ. Co., New York, 1970 | MR | Zbl
[14] Dong D., Chen C., Tarn T.-J., Pechen A., Rabitz H., “Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning”, IEEE Trans. Syst. Man Cybern. B: Cybern., 38:4 (2008), 957–962 | DOI | MR
[15] Dong D., Zhang C., Rabitz H., Pechen A., Tarn T.-J., “Incoherent control of locally controllable quantum systems”, J. Chem. Phys., 129:15 (2008), 154103 | DOI
[16] Gabasov R., Kirillova F.M., “High order necessary conditions for optimality”, SIAM J. Control, 10 (1972), 127–168 | DOI | MR | Zbl
[17] R. Gabasov and F. M. Kirillova, M. Dekker, New York, 1976 | Zbl
[18] R. V. Gamkrelidze, “History of the discovery of the Pontryagin maximum principle”, Proc. Steklov Inst. Math., 304 (2019), 1–7 | DOI | MR | Zbl
[19] Glaser S.J. et al., “Training Schrödinger's cat: Quantum optimal control: Strategic report on current status, visions and goals for research in Europe”, Eur. Phys. J. D, 69:12 (2015), 279 | DOI
[20] Kakuyanagi K., Baba T., Matsuzaki Y., Nakano H., Saito S., Semba K., “Observation of quantum Zeno effect in a superconducting flux qubit”, New J. Phys., 17:6 (2015), 063035 | DOI
[21] Koch C.P., “Controlling open quantum systems: Tools, achievements, and limitations”, J. Phys.: Condens. Matter, 28:21 (2016), 213001 | DOI
[22] Kurzhanski A.B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl
[23] Li J., Lu D., Luo Z., Laflamme R., Peng X., Du J., “Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering”, Phys. Rev. A, 94:1 (2016), 012312 | DOI
[24] Lucas F., Hornberger K., “Incoherent control of the retinal isomerization in rhodopsin”, Phys. Rev. Lett., 113:5 (2014), 058301 | DOI
[25] Matplotlib: Visualization with Python https://matplotlib.org/
[26] Mesterton-Gibbons M., A primer on the calculus of variations and optimal control theory, Stud. Math. Lib., 50, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[27] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V.J., Rabitz H., “Why is chemical synthesis and property optimization easier than expected?”, Phys. Chem. Chem. Phys., 13:21 (2011), 10048–10070 | DOI
[28] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russ. Math. Surv., 74:5 (2019), 851–908 | DOI | MR | Zbl
[29] Morzhin O.V., Pechen A.N., “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019), 1532–1548 | DOI | MR | Zbl
[30] O. V. Morzhin and A. N. Pechen, “Maximization of the Uhlmann–Jozsa fidelity for an open two-level quantum system with coherent and incoherent controls”, Phys. Part. Nucl., 51:4 (2020), 464–469 | DOI
[31] Morzhin O.V., Pechen A.N., “Machine learning for finding suboptimal final times and coherent and incoherent controls for an open two-level quantum system”, Lobachevskii J. Math., 41:12 (2020), 2353–2368 | DOI | MR | Zbl
[32] Morzhin O.V., Pechen A.N., “Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls”, Int. J. Theor. Phys., 60:2 (2021), 576–584 ; arXiv: 1909.09400 [quant-ph] | DOI | MR
[33] Morzhin O.V., Pechen A.N., “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls”, AIP Conf. Proc. (to appear)
[34] O. V. Morzhin and A. I. Tyatyushkin, “An algorithm of the method of sections and program tools for constructing reachable sets of nonlinear control systems”, J. Comput. Syst. Sci. Int., 47:1 (2008), 1–7 | DOI | MR
[35] M. S. Nikol'skii, “Approximation of the attainability set for a controlled process”, Math. Notes, 41:1 (1987), 44–48 | DOI
[36] Pechen A., “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI
[37] Pechen A., Il'in N., Shuang F., Rabitz H., “Quantum control by von Neumann measurements”, Phys. Rev. A, 74:5 (2006), 052102 | DOI | MR
[38] Pechen A., Rabitz H., “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102 | DOI | MR
[39] A. N. Pechen and H. Rabitz, “Incoherent control of open quantum systems”, J. Math. Sci., 199:6 (2014), 695–701 | DOI | MR | Zbl
[40] Pechen A., Trushechkin A., “Measurement-assisted Landau–Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316 | DOI
[41] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl
[42] Saff E.B., Kuijlaars A.B.J., “Distributing many points on a sphere”, Math. Intell., 19:1 (1997), 5–11 | DOI | MR | Zbl
[43] SciPy.org: Find the global minimum of a function using Dual Annealing https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
[44] SciPy.org: Integrate a system of ordinary differential equations https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
[45] Shackerley-Bennett U., Pitchford A., Genoni M.G., Serafini A., Burgarth D.K., “The reachable set of single-mode quadratic Hamiltonians”, J. Phys. A: Math. Theor., 50:15 (2017), 155203 | DOI | MR | Zbl
[46] Shuang F., Pechen A., Ho T.-S., Rabitz H., “Observation-assisted optimal control of quantum dynamics”, J. Chem. Phys., 126:13 (2007), 134303 | DOI
[47] Tannor D.J., Introduction to quantum mechanics: A time-dependent perspective, Univ. Sci. Books, Sausilito, CA, 2007
[48] Tsallis C., Stariolo D.A., “Generalized simulated annealing”, Physica A, 233:1–2 (1996), 395–406 | DOI | MR
[49] A. I. Tyatyushkin and O. V. Morzhin, “Numerical investigation of attainability sets of nonlinear controlled differential systems”, Autom. Remote Control, 72:6 (2011), 1291–1300 | DOI | MR | Zbl
[50] Wu R., Pechen A., Brif C., Rabitz H., “Controllability of open quantum systems with Kraus-map dynamics”, J. Phys. A: Math. Theor., 40:21 (2007), 5681–5693 | DOI | MR | Zbl
[51] Xiang Y., Gong X.G., “Efficiency of generalized simulated annealing”, Phys. Rev. E, 62:3 (2000), 4473–4476 | DOI
[52] Yuan H., “Reachable set of open quantum dynamics for a single spin in Markovian environment”, Automatica, 49:4 (2013), 955–959 | DOI | MR | Zbl