Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 154-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modern integrated photonic quantum technologies are based on optical waveguides. The propagation of light in optical waveguides allows one to implement quantum computation and bosonic quantum simulation. Nevertheless, to further develop photonic quantum devices, one needs a precise mathematical description of quantum dynamics in waveguides. In this paper, we consider a double-layer array of optical waveguides and find exact analytical expressions for the Hamiltonian of the system and its parameters. The results are obtained both in the ideal waveguide approximation and in the case of photon loss in the waveguides.
Keywords: quantum walks, optical waveguides.
@article{TM_2021_313_a13,
     author = {A. A. Melnikov and A. P. Alodjants and L. E. Fedichkin},
     title = {Tunneling in {Double-Layer} {Optical} {Waveguides} as {Quantum} {Walks} on {Graphs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {154--160},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a13/}
}
TY  - JOUR
AU  - A. A. Melnikov
AU  - A. P. Alodjants
AU  - L. E. Fedichkin
TI  - Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 154
EP  - 160
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a13/
LA  - ru
ID  - TM_2021_313_a13
ER  - 
%0 Journal Article
%A A. A. Melnikov
%A A. P. Alodjants
%A L. E. Fedichkin
%T Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 154-160
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a13/
%G ru
%F TM_2021_313_a13
A. A. Melnikov; A. P. Alodjants; L. E. Fedichkin. Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 154-160. http://geodesic.mathdoc.fr/item/TM_2021_313_a13/

[1] Efremidis N.K., Christodoulides D.N., “Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties”, Phys. Rev. E, 65:5 (2002), 056607 | DOI

[2] Fedichkin L., Fedorov A., “Error rate of a charge qubit coupled to an acoustic phonon reservoir”, Phys. Rev. A, 69:3 (2004), 032311 | DOI

[3] Fedichkin L., Yanchenko M., Valiev K.A., “Coherent charge qubits based on GaAs quantum dots with a built-in barrier”, Nanotechnology, 11:4 (2000), 387–391 | DOI

[4] Klimov A.B., Sánchez-Soto L.L., “Depolarization for quantum channels with higher symmetries”, Phys. scr., 2010:T140 (2010), 014009 | DOI

[5] Meinecke J.D.A. et al., “Coherent time evolution and boundary conditions of two-photon quantum walks in waveguide arrays”, Phys. Rev. A, 88 (2013), 012308 | DOI

[6] Melnikov A.A., Alodjants A.P., Fedichkin L.E., “Hitting time for quantum walks of identical particles”, Proc. Int. Conf. on Micro- and Nano-Electronics 2018, Proc. SPIE, 11022, SPIE, Bellingham, WA, 2019, 659–666

[7] Melnikov A.A., Fedichkin L.E., “Kvantovye bluzhdaniya identichnykh chastits”, Tr. FTIAN, 24 (2014), 37–47

[8] Melnikov A.A., Fedichkin L.E., “Quantum walks of interacting fermions on a cycle graph”, Sci. Rep., 6 (2016), 34226 | DOI

[9] Melnikov A.A., Fedichkin L.E., “Continuous-time quantum walk of two interacting fermions on a cycle graph”, Proc. Int. Conf. on Micro- and Nano-Electronics 2016, Proc. SPIE, 10224, SPIE, Bellingham, WA, 2016, 677–682

[10] Melnikov A.A., Fedichkin L.E., “Entanglement dynamics of two electrons in noisy quantum walks”, 2017 Progress in Electromagnetics Research Symposium – Spring (PIERS), IEEE, Piscataway, NJ, 2017, 2900–2903 | DOI

[11] Melnikov A.A., Fedichkin L.E., “Fermionic entanglement via quantum walks in quantum dots”, AIP Conf. Proc., 1936 (2018), 020025 | DOI

[12] Melnikov A.A., Fedichkin L.E., Alodjants A., “Predicting quantum advantage by quantum walk with convolutional neural networks”, New J. Phys., 21:12 (2019), 125002 | DOI | MR

[13] Melnikov A.A., Fedichkin L.E., Alodjants A., “On training a classifier of hitting times for quantum walks”, AIP Conf. Proc., 2241 (2020), 020029 | DOI | MR

[14] Melnikov A.A., Fedichkin L.E., Lee R.-K., Alodjants A., “Machine learning transfer efficiencies for noisy quantum walks”, Adv. Quantum Technol., 3:4 (2020), 1900115 | DOI

[15] Perets H.B., Lahini Y., Pozzi F., Sorel M., Morandotti R., Silberberg Y., “Realization of quantum walks with negligible decoherence in waveguide lattices”, Phys. Rev. Lett., 100:17 (2008), 170506 | DOI

[16] Peruzzo A. et al., “Quantum walks of correlated photons”, Science, 329:5998 (2010), 1500–1503 | DOI

[17] Shabani A., Lidar D.A., “Completely positive post-markovian master equation via a measurement approach”, Phys. Rev. A, 71:2 (2005), 020101 | DOI | MR | Zbl

[18] Solenov D., Fedichkin L., “Continuous-time quantum walks on a cycle graph”, Phys. Rev. A, 73:1 (2006), 012313 | DOI | MR

[19] Solntsev A.S., Sukhorukov A.A., Neshev D.N., Kivshar Y.S., “Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides”, Phys. Rev. Lett., 108:2 (2012), 023601 | DOI

[20] Tang H. et al., “Experimental two-dimensional quantum walk on a photonic chip”, Sci. Adv., 4:5 (2018), eaat3174 | DOI

[21] Veiko V.P. et al., “Femtosecond laser-induced stress-free ultra-densification inside porous glass”, Laser Phys. Lett., 13:5 (2016), 055901 | DOI

[22] Wang J., Sciarrino F., Laing A., Thompson M.G., “Integrated photonic quantum technologies”, Nature Photonics, 14:5 (2019), 273–284 | DOI

[23] Will M., Nolte S., Chichkov B.N., Tünnermann A., “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses”, Appl. Opt., 41:21 (2002), 4360–4364 | DOI