Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_313_a13, author = {A. A. Melnikov and A. P. Alodjants and L. E. Fedichkin}, title = {Tunneling in {Double-Layer} {Optical} {Waveguides} as {Quantum} {Walks} on {Graphs}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {154--160}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a13/} }
TY - JOUR AU - A. A. Melnikov AU - A. P. Alodjants AU - L. E. Fedichkin TI - Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 154 EP - 160 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_313_a13/ LA - ru ID - TM_2021_313_a13 ER -
%0 Journal Article %A A. A. Melnikov %A A. P. Alodjants %A L. E. Fedichkin %T Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 154-160 %V 313 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_313_a13/ %G ru %F TM_2021_313_a13
A. A. Melnikov; A. P. Alodjants; L. E. Fedichkin. Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 154-160. http://geodesic.mathdoc.fr/item/TM_2021_313_a13/
[1] Efremidis N.K., Christodoulides D.N., “Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties”, Phys. Rev. E, 65:5 (2002), 056607 | DOI
[2] Fedichkin L., Fedorov A., “Error rate of a charge qubit coupled to an acoustic phonon reservoir”, Phys. Rev. A, 69:3 (2004), 032311 | DOI
[3] Fedichkin L., Yanchenko M., Valiev K.A., “Coherent charge qubits based on GaAs quantum dots with a built-in barrier”, Nanotechnology, 11:4 (2000), 387–391 | DOI
[4] Klimov A.B., Sánchez-Soto L.L., “Depolarization for quantum channels with higher symmetries”, Phys. scr., 2010:T140 (2010), 014009 | DOI
[5] Meinecke J.D.A. et al., “Coherent time evolution and boundary conditions of two-photon quantum walks in waveguide arrays”, Phys. Rev. A, 88 (2013), 012308 | DOI
[6] Melnikov A.A., Alodjants A.P., Fedichkin L.E., “Hitting time for quantum walks of identical particles”, Proc. Int. Conf. on Micro- and Nano-Electronics 2018, Proc. SPIE, 11022, SPIE, Bellingham, WA, 2019, 659–666
[7] Melnikov A.A., Fedichkin L.E., “Kvantovye bluzhdaniya identichnykh chastits”, Tr. FTIAN, 24 (2014), 37–47
[8] Melnikov A.A., Fedichkin L.E., “Quantum walks of interacting fermions on a cycle graph”, Sci. Rep., 6 (2016), 34226 | DOI
[9] Melnikov A.A., Fedichkin L.E., “Continuous-time quantum walk of two interacting fermions on a cycle graph”, Proc. Int. Conf. on Micro- and Nano-Electronics 2016, Proc. SPIE, 10224, SPIE, Bellingham, WA, 2016, 677–682
[10] Melnikov A.A., Fedichkin L.E., “Entanglement dynamics of two electrons in noisy quantum walks”, 2017 Progress in Electromagnetics Research Symposium – Spring (PIERS), IEEE, Piscataway, NJ, 2017, 2900–2903 | DOI
[11] Melnikov A.A., Fedichkin L.E., “Fermionic entanglement via quantum walks in quantum dots”, AIP Conf. Proc., 1936 (2018), 020025 | DOI
[12] Melnikov A.A., Fedichkin L.E., Alodjants A., “Predicting quantum advantage by quantum walk with convolutional neural networks”, New J. Phys., 21:12 (2019), 125002 | DOI | MR
[13] Melnikov A.A., Fedichkin L.E., Alodjants A., “On training a classifier of hitting times for quantum walks”, AIP Conf. Proc., 2241 (2020), 020029 | DOI | MR
[14] Melnikov A.A., Fedichkin L.E., Lee R.-K., Alodjants A., “Machine learning transfer efficiencies for noisy quantum walks”, Adv. Quantum Technol., 3:4 (2020), 1900115 | DOI
[15] Perets H.B., Lahini Y., Pozzi F., Sorel M., Morandotti R., Silberberg Y., “Realization of quantum walks with negligible decoherence in waveguide lattices”, Phys. Rev. Lett., 100:17 (2008), 170506 | DOI
[16] Peruzzo A. et al., “Quantum walks of correlated photons”, Science, 329:5998 (2010), 1500–1503 | DOI
[17] Shabani A., Lidar D.A., “Completely positive post-markovian master equation via a measurement approach”, Phys. Rev. A, 71:2 (2005), 020101 | DOI | MR | Zbl
[18] Solenov D., Fedichkin L., “Continuous-time quantum walks on a cycle graph”, Phys. Rev. A, 73:1 (2006), 012313 | DOI | MR
[19] Solntsev A.S., Sukhorukov A.A., Neshev D.N., Kivshar Y.S., “Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides”, Phys. Rev. Lett., 108:2 (2012), 023601 | DOI
[20] Tang H. et al., “Experimental two-dimensional quantum walk on a photonic chip”, Sci. Adv., 4:5 (2018), eaat3174 | DOI
[21] Veiko V.P. et al., “Femtosecond laser-induced stress-free ultra-densification inside porous glass”, Laser Phys. Lett., 13:5 (2016), 055901 | DOI
[22] Wang J., Sciarrino F., Laing A., Thompson M.G., “Integrated photonic quantum technologies”, Nature Photonics, 14:5 (2019), 273–284 | DOI
[23] Will M., Nolte S., Chichkov B.N., Tünnermann A., “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses”, Appl. Opt., 41:21 (2002), 4360–4364 | DOI