Constrained Optimization Criterion for Zirconium Isotope Separation by the Method of Laser-Assisted Retardation of Condensation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 143-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new optimization criterion for iterative zirconium isotope recovery by laser-assisted retardation of condensation is introduced. Generally, the optimization should be performed over the following set of parameters: gas flow pressure and temperature, target gas molar fraction, laser pulse intensity, laser beam radius, nozzle throat height and width, total processing time (number of iterations), and irradiation cell length. The laser intensity variation range should satisfy the condition of applicability of the isotope separation method used, and temperature in the mixing tank should be high enough to prevent condensation of the target gas. The evolution of the objective function for zirconium isotope separation has been evaluated as a function of the gas flow core temperature at different ambient gas pressures.
Keywords: quantum control, quantum technologies, optimization, laser-assisted isotope separation, zirconium isotopes.
@article{TM_2021_313_a12,
     author = {K. A. Lyakhov and A. N. Pechen},
     title = {Constrained {Optimization} {Criterion} for {Zirconium} {Isotope} {Separation} by the {Method} of {Laser-Assisted} {Retardation} of {Condensation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {143--153},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a12/}
}
TY  - JOUR
AU  - K. A. Lyakhov
AU  - A. N. Pechen
TI  - Constrained Optimization Criterion for Zirconium Isotope Separation by the Method of Laser-Assisted Retardation of Condensation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 143
EP  - 153
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a12/
LA  - ru
ID  - TM_2021_313_a12
ER  - 
%0 Journal Article
%A K. A. Lyakhov
%A A. N. Pechen
%T Constrained Optimization Criterion for Zirconium Isotope Separation by the Method of Laser-Assisted Retardation of Condensation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 143-153
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a12/
%G ru
%F TM_2021_313_a12
K. A. Lyakhov; A. N. Pechen. Constrained Optimization Criterion for Zirconium Isotope Separation by the Method of Laser-Assisted Retardation of Condensation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 143-153. http://geodesic.mathdoc.fr/item/TM_2021_313_a12/

[1] R. V. Ambartsumyan, V. S. Dolzhikov, V. S. Letokhov, E. A. Ryabov, and N. V. Chekalin, “Investigation of the dissociation of BCI$_3$ molecules in the field of an intense CO$_2$ laser pulse”, Sov. Phys. JETP, 42:1 (1975), 36–41

[2] Apatin V.M. i dr., “Lazernoe razdelenie izotopov azota metodom IK + UF dissotsiatsii molekul ammiaka”, Kvantovaya elektronika, 38:8 (2008), 775–782

[3] Baranov V.Yu. et al., “Production of carbon isotopes by laser separation”, Progress in research and development of high-power industrial CO$_2$ lasers, Proc. SPIE, 4165, SPIE, Bellingham, WA, 2000, 314–323 | DOI

[4] Burmeister J.L., Deardorff E.A., Jensen A., Christiansen V.H., “Bonding patterns in metallocene pseudohalide complexes”, Inorg. Chem., 9:1 (1970), 58–63 | DOI

[5] Dong D., Zhang C., Rabitz H., Pechen A., Tarn T.-J., “Incoherent control of locally controllable quantum systems”, J. Chem. Phys., 129:15 (2008), 154103 | DOI

[6] Dyagileva L.M., Vyshinskaya L.I., Tsyganova E.I., Ivanov V.L., “Thermal decomposition of bis(cyclopentadienyl)dimethylzirconium”, Russ. J. Gen. Chem., 67:5 (1997), 663–666

[7] Eerkens J.W., “Equilibrium dimer concentrations in gases and gas mixtures”, Chem. Phys., 269:1–3 (2001), 189–241 | DOI

[8] Eerkens J.W., “Laser-induced migration and isotope separation of epi-thermal monomers and dimers in supercooled free jets”, Laser Part. Beams, 23:2 (2005), 225–253 | DOI

[9] Eerkens J.W., Kunze J.F., Bond L.J., “Laser isotope enrichment for medical and industrial applications”, Proc. 14th Int. Conf. on Nuclear Engineering (Miami, FL, 2006), v. 3, ASME, New York, 2006, 483–492 | DOI

[10] Granovsky A.A., Firefly computational chemistry program, version 8, 2019 http://classic.chem.msu.su/gran/firefly/ | Zbl

[11] Lee Y.T., Isotope separation by photodissociation of Van der Wall's molecules, US patent no. 4032306, 1977

[12] Letokhov V.S., Ryabov E.A., “Laser infrared multiphoton noncoherent control of intermolecular (isotope) selectivity for polyatomic molecules on a practical scale”, Isr. J. Chem., 44:1–3 (2004), 1–7 | DOI

[13] Lyakhov K.A., Lee H.J., Pechen A.N., “Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method”, Sep. Purif. Technol., 176 (2017), 402–411 | DOI

[14] Lyakhov K.A., Pechen A.N., “CO$_2$ laser system design for efficient boron isotope separation by the method of selective laser-assisted retardation of condensation”, Appl. Phys. B, 126:8 (2020), 141 | DOI

[15] Lyakhov K.A., Pechen A.N., “Evolution of the enrichment factor for an iterative scheme of zirconium isotopes separation”, Lobachevskii J. Math., 41:12 (2020), 2345–2352 | DOI | MR

[16] Lyakhov K.A., Pechen A.N., Lee H.-J., “The efficiency of one-line versus multi-line excitation of boron isotopes within the method of selective laser assisted retardation of condensation”, AIP Adv., 8:9 (2018), 095325 | DOI

[17] Miller W.H., Eerkens J.W., Laser isotope separation employing condensation repression, Preprint, Nucl. Sci. Eng. Inst., Univ. Missouri, Columbia, MO, 2004

[18] Oerlikon Leybold Vacuum full line catalog, 2020 http://www.leybold.com/epaper/en/

[19] PAR Systems. UT Series Laser, 2020 http://www.par.com/technologies/pulsed-co2-lasers/atmospheric-tea-co2-lasers/ut-series-laser/

[20] Pechen A., Il'in N., Shuang F., Rabitz H., “Quantum control by von Neumann measurements”, Phys. Rev. A, 74:5 (2006), 052102 | DOI | MR

[21] Pechen A., Rabitz H., “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102 | DOI | MR

[22] Schmidt M.W. et al., “General atomic and molecular electronic structure system”, J. Comput. Chem., 14:11 (1993), 1347–1363 | DOI

[23] Snyder R., “A proliferation assessment of third generation laser uranium enrichment technology”, Sci. Global Secur., 24:2 (2016), 68–91 | DOI