Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 124-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that nonorthogonal quantum states cannot be reliably distinguished; however, for a number of sets of quantum states, the operation of unambiguous discrimination is possible, which either provides full information or yields an inconclusive result. In this paper, a generalization of such a transformation is constructed that has an increased success probability and makes the states more distinguishable. It is shown that after this transformation the states can be reliably distinguished without loss of the total success probability.
@article{TM_2021_313_a10,
     author = {D. A. Kronberg},
     title = {Increasing the {Distinguishability} of {Quantum} {States} with an {Arbitrary} {Success} {Probability}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {124--130},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a10/}
}
TY  - JOUR
AU  - D. A. Kronberg
TI  - Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 124
EP  - 130
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a10/
LA  - ru
ID  - TM_2021_313_a10
ER  - 
%0 Journal Article
%A D. A. Kronberg
%T Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 124-130
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a10/
%G ru
%F TM_2021_313_a10
D. A. Kronberg. Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 124-130. http://geodesic.mathdoc.fr/item/TM_2021_313_a10/

[1] Acín A., Gisin N., Scarani V., “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks”, Phys. Rev. A, 69:1 (2004), 012309 | DOI

[2] Avanesov A.S., Kronberg D.A., Pechen A.N., “Active beam splitting attack applied to differential phase shift quantum key distribution protocol”, p-Adic Numbers, Ultrametric Anal. Appl., 10:3 (2018), 222–232 | DOI | MR | Zbl

[3] Bergou J.A., Futschik U., Feldman E., “Optimal unambiguous discrimination of pure quantum states”, Phys. Rev. Lett., 108:25 (2012), 250502 | DOI

[4] Chefles A., “Unambiguous discrimination between linearly independent quantum states”, Phys. Lett. A, 239:6 (1998), 339–347 | DOI | MR | Zbl

[5] Croke S., Andersson E., Barnett S.M., Gilson C.R., Jeffers J., “Maximum confidence quantum measurements”, Phys. Rev. Lett., 96:7 (2006), 070401 | DOI

[6] Dieks D., “Overlap and distinguishability of quantum states”, Phys. Lett. A, 126:5–6 (1988), 303–306 | DOI | MR

[7] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, de Gruyter Stud. Math. Phys., 16, de Gruyter, Berlin, 2012 | MR | Zbl

[8] Ivanovic I.D., “How to differentiate between non-orthogonal states”, Phys. Lett. A, 123:6 (1987), 257–259 | DOI | MR

[9] Kronberg D.A., Kurochkin Yu.V., “O roli fluktuatsii intensivnosti v kvantovoi kriptografii na osnove kogerentnykh sostoyanii”, Kvantovaya elektronika, 48:9 (2018), 843–848

[10] Kronberg D.A., Nikolaeva A.S., Kurochkin Yu.V., Fedorov A.K., “Quantum soft filtering for the improved security analysis of the coherent one-way quantum-key-distribution protocol”, Phys. Rev. A, 101:3 (2020), 032334 | DOI | MR

[11] Peres A., “How to differentiate between non-orthogonal states”, Phys. Lett. A, 128:1–2 (1988), 19 | DOI | MR

[12] Sasaki M., Kato K., Izutsu M., Hirota O., “Quantum channels showing superadditivity in classical capacity”, Phys. Rev. A, 58:1 (1998), 146–158 | DOI