Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 124-130

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that nonorthogonal quantum states cannot be reliably distinguished; however, for a number of sets of quantum states, the operation of unambiguous discrimination is possible, which either provides full information or yields an inconclusive result. In this paper, a generalization of such a transformation is constructed that has an increased success probability and makes the states more distinguishable. It is shown that after this transformation the states can be reliably distinguished without loss of the total success probability.
@article{TM_2021_313_a10,
     author = {D. A. Kronberg},
     title = {Increasing the {Distinguishability} of {Quantum} {States} with an {Arbitrary} {Success} {Probability}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {124--130},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a10/}
}
TY  - JOUR
AU  - D. A. Kronberg
TI  - Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 124
EP  - 130
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a10/
LA  - ru
ID  - TM_2021_313_a10
ER  - 
%0 Journal Article
%A D. A. Kronberg
%T Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 124-130
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a10/
%G ru
%F TM_2021_313_a10
D. A. Kronberg. Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 124-130. http://geodesic.mathdoc.fr/item/TM_2021_313_a10/