On Some Aspects of the Holographic Pole-Skipping Phenomenon
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 7-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study various aspects of the recently discovered holographic pole-skipping phenomenon. We consider pole-skipping in the holographic dual of rotating black holes for the scalar field and metric perturbations. We determine the Lyapunov exponent and butterfly velocity from holographic gravitational pole-skipping points. We also study the first pole-skipping point for the scalar field in various backgrounds including rotating and charged black holes, and we take into account the interaction with the background electromagnetic field.
@article{TM_2021_313_a0,
     author = {Dmitry S. Ageev},
     title = {On {Some} {Aspects} of the {Holographic} {Pole-Skipping} {Phenomenon}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--13},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a0/}
}
TY  - JOUR
AU  - Dmitry S. Ageev
TI  - On Some Aspects of the Holographic Pole-Skipping Phenomenon
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 7
EP  - 13
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a0/
LA  - ru
ID  - TM_2021_313_a0
ER  - 
%0 Journal Article
%A Dmitry S. Ageev
%T On Some Aspects of the Holographic Pole-Skipping Phenomenon
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 7-13
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a0/
%G ru
%F TM_2021_313_a0
Dmitry S. Ageev. On Some Aspects of the Holographic Pole-Skipping Phenomenon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 7-13. http://geodesic.mathdoc.fr/item/TM_2021_313_a0/

[1] D. S. Ageev and I. Ya. Arefeva, “Holography and nonlocal operators for the BTZ black hole with nonzero angular momentum”, Theor. Math. Phys., 180:2 (2014), 881–893 | DOI | MR | Zbl

[2] Ageev D.S., Aref'eva I.Ya., “When things stop falling, chaos is suppressed”, J. High Energy Phys., 2019:01 (2019), 100 ; arXiv: 1806.05574 [hep-th] | DOI | MR | Zbl

[3] Aref'eva I., Bagrov A., Koshelev A.S., “Holographic thermalization from Kerr–AdS”, J. High Energy Phys., 2013:07 (2013), 170 ; arXiv: 1305.3267 [hep-th] | DOI | MR | Zbl

[4] Blake M., Davison R.A., Grozdanov S., Liu H., “Many-body chaos and energy dynamics in holography”, J. High Energy Phys., 2018:10 (2018), 035 ; arXiv: 1809.01169 [hep-th] | DOI | MR

[5] Blake M., Davison R.A., Vegh D., “Horizon constraints on holographic Green's functions”, J. High Energy Phys., 2020:01 (2020), 077 ; arXiv: 1904.12883 [hep-th] | DOI | MR

[6] Hawking S.W., Hunter C.J., Taylor-Robinson M.M., “Rotation and the AdS–CFT correspondence”, Phys. Rev. D, 59:6 (1999), 064005 ; arXiv: hep-th/9811056. | DOI | MR | MR | Zbl

[7] Jahnke V., Kim K.-Y., Yoon J., “On the chaos bound in rotating black holes”, J. High Energy Phys., 2019:05 (2019), 037 ; arXiv: 1903.09086 [hep-th] | DOI | MR

[8] Liu Y., Raju A., “Quantum chaos in topologically massive gravity”, J. High Energy Phys., 2020:12 (2020), 027 ; arXiv: 2005.08508 [hep-th] | DOI

[9] Maldacena J., “The large-N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys., 38:4 (1999), 1113–1133 ; arXiv: hep-th/9711200 [hep-th] | DOI | MR | Zbl

[10] Maldacena J., Shenker S.H., Stanford D., “A bound on chaos”, J. High Energy Phys., 2016:08 (2016), 106 ; arXiv: 1503.01409 [hep-th] | DOI | MR | Zbl

[11] Poojary R.R., “BTZ dynamics and chaos”, J. High Energy Phys., 2020:03 (2020), 048 ; arXiv: 1812.10073 [hep-th] | DOI | MR