Interpolation of Spaces of Functions of Positive Smoothness on a Domain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 98-110
Voir la notice de l'article provenant de la source Math-Net.Ru
Interpolation spaces are described for spaces of functions of positive smoothness on a domain $G$ of the Euclidean space $\mathbb R^n$ that satisfies the flexible cone condition. As a consequence, multiplicative estimates for the norms of functions are obtained. The arguments are based on integral representations of functions over a flexible cone in terms of the local approximations of functions by polynomials and on estimates of the arising convolution operators.
Keywords:
regular domain, spaces of functions of positive smoothness
Mots-clés : interpolation, multiplicative estimates.
Mots-clés : interpolation, multiplicative estimates.
@article{TM_2021_312_a4,
author = {O. V. Besov},
title = {Interpolation of {Spaces} of {Functions} of {Positive} {Smoothness} on a {Domain}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {98--110},
publisher = {mathdoc},
volume = {312},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a4/}
}
O. V. Besov. Interpolation of Spaces of Functions of Positive Smoothness on a Domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 98-110. http://geodesic.mathdoc.fr/item/TM_2021_312_a4/