Interpolation of Spaces of Functions of Positive Smoothness on a Domain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolation spaces are described for spaces of functions of positive smoothness on a domain $G$ of the Euclidean space $\mathbb R^n$ that satisfies the flexible cone condition. As a consequence, multiplicative estimates for the norms of functions are obtained. The arguments are based on integral representations of functions over a flexible cone in terms of the local approximations of functions by polynomials and on estimates of the arising convolution operators.
Keywords: regular domain, spaces of functions of positive smoothness
Mots-clés : interpolation, multiplicative estimates.
@article{TM_2021_312_a4,
     author = {O. V. Besov},
     title = {Interpolation of {Spaces} of {Functions} of {Positive} {Smoothness} on a {Domain}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a4/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Interpolation of Spaces of Functions of Positive Smoothness on a Domain
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 98
EP  - 110
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a4/
LA  - ru
ID  - TM_2021_312_a4
ER  - 
%0 Journal Article
%A O. V. Besov
%T Interpolation of Spaces of Functions of Positive Smoothness on a Domain
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 98-110
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a4/
%G ru
%F TM_2021_312_a4
O. V. Besov. Interpolation of Spaces of Functions of Positive Smoothness on a Domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 98-110. http://geodesic.mathdoc.fr/item/TM_2021_312_a4/

[1] S. S. Ajiev, “Characterizations of $B_{p,q}^s(G)$, $L_{p,q}^s(G)$, $W_p^s(G)$ and certain other function spaces. Applications”, Proc. Steklov Inst. Math., 227 (1999), 1–36 | MR | Zbl

[2] A. Benedek, A. P. Calderón, and R. Panzone, “Convolution operators on Banach space valued functions”, Proc. Natl. Acad. Sci. USA, 48:3 (1962), 356–365 | DOI | MR | Zbl

[3] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundl. Math. Wiss., 223, Springer, Berlin, 1976 | Zbl

[4] O. V. Besov, “Equivalent normings of the Sobolev–Liouville space on a domain”, Proc. Steklov Inst. Math., 194 (1993), 13–30 | MR | Zbl

[5] O. V. Besov, “Estimates for certain integral operators”, Proc. Steklov Inst. Math., 227 (1999), 70–72 | MR | Zbl

[6] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Embedding Theorems, J. Wiley Sons, New York, 1979 | MR

[7] Brezis H., Mironescu P., “Gagliardo–Nirenberg inequalities and non-inequalities: The full story”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 35:5 (2018), 1355–1376 | DOI | MR | Zbl

[8] L. Hörmander, “Estimates for translation invariant operators in $L^p$ spaces”, Acta Math., 104 (1960), 93–140 | DOI | MR | Zbl

[9] Krée P., “Propriétés de continuité dans $L^p$ de certains noyaux”, Bol. Unione Mat. Ital., 22:3 (1967), 330–344 | MR | Zbl

[10] Rubio de Francia J.L., Ruiz F.J., Torrea J.L., “Calderón–Zygmund theory for operator-valued kernels”, Adv. Math., 62 (1986), 7–48 | DOI | MR | Zbl

[11] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, North-Holland, Amsterdam, 1978 | MR | Zbl