Weighted Fourier Inequalities and Boundedness of Variation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the trigonometric series $\sum _{n=1}^\infty \lambda _n \cos nx$ and $\sum _{n=1}^\infty \lambda _n \sin nx$ with $\{\lambda _n\}$ being a sequence of bounded variation. Let $\psi $ denote the sum of such a series. We obtain necessary and sufficient conditions for the validity of the weighted Fourier inequality $\left (\int _0^\pi |\psi (x)|^q \omega (x)\,dx\right )^{1/q} \le C\!\left (\sum _{n=1}^\infty u_n\left (\sum _{k=n}^\infty |\lambda _{k}-\lambda _{k+1}|\right )^p \right )^{1/p}$, $0$, in terms of the weight $\omega $ and the weighted sequence $\{u_n\}$. Applications to the series with general monotone coefficients are given.
Keywords: Fourier series/transforms, weighted norm inequalities, Hardy–Littlewood type theorems, general monotone sequences.
@article{TM_2021_312_a18,
     author = {Sergey Yu. Tikhonov},
     title = {Weighted {Fourier} {Inequalities} and {Boundedness} of {Variation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {294--312},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a18/}
}
TY  - JOUR
AU  - Sergey Yu. Tikhonov
TI  - Weighted Fourier Inequalities and Boundedness of Variation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 294
EP  - 312
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a18/
LA  - ru
ID  - TM_2021_312_a18
ER  - 
%0 Journal Article
%A Sergey Yu. Tikhonov
%T Weighted Fourier Inequalities and Boundedness of Variation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 294-312
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a18/
%G ru
%F TM_2021_312_a18
Sergey Yu. Tikhonov. Weighted Fourier Inequalities and Boundedness of Variation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312. http://geodesic.mathdoc.fr/item/TM_2021_312_a18/