Weighted Fourier Inequalities and Boundedness of Variation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the trigonometric series $\sum _{n=1}^\infty \lambda _n \cos nx$ and $\sum _{n=1}^\infty \lambda _n \sin nx$ with $\{\lambda _n\}$ being a sequence of bounded variation. Let $\psi $ denote the sum of such a series. We obtain necessary and sufficient conditions for the validity of the weighted Fourier inequality $\left (\int _0^\pi |\psi (x)|^q \omega (x)\,dx\right )^{1/q} \le C\!\left (\sum _{n=1}^\infty u_n\left (\sum _{k=n}^\infty |\lambda _{k}-\lambda _{k+1}|\right )^p \right )^{1/p}$, $0$, in terms of the weight $\omega $ and the weighted sequence $\{u_n\}$. Applications to the series with general monotone coefficients are given.
Keywords: Fourier series/transforms, weighted norm inequalities, Hardy–Littlewood type theorems, general monotone sequences.
@article{TM_2021_312_a18,
     author = {Sergey Yu. Tikhonov},
     title = {Weighted {Fourier} {Inequalities} and {Boundedness} of {Variation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {294--312},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a18/}
}
TY  - JOUR
AU  - Sergey Yu. Tikhonov
TI  - Weighted Fourier Inequalities and Boundedness of Variation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 294
EP  - 312
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a18/
LA  - ru
ID  - TM_2021_312_a18
ER  - 
%0 Journal Article
%A Sergey Yu. Tikhonov
%T Weighted Fourier Inequalities and Boundedness of Variation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 294-312
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a18/
%G ru
%F TM_2021_312_a18
Sergey Yu. Tikhonov. Weighted Fourier Inequalities and Boundedness of Variation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312. http://geodesic.mathdoc.fr/item/TM_2021_312_a18/

[1] Andersen K.F., “On the transformation of Fourier coefficients of certain classes of functions. II”, Pac. J. Math., 105:1 (1983), 1–10 | DOI | MR

[2] Andersen K.F., Heinig H.P., “Weighted norm inequalities for certain integral operators”, SIAM J. Math. Anal., 14:4 (1983), 834–844 | DOI | MR | Zbl

[3] Andersen K.F., Muckenhoupt B., “Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions”, Stud. math., 72 (1981), 9–26 | DOI | MR

[4] Ariño M., Muckenhoupt B., “Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions”, Trans. Amer. Math. Soc., 320:2 (1990), 727–735 | MR | Zbl

[5] Askey R., “Norm inequalities for some orthogonal series”, Bull. Amer. Math. Soc., 72 (1966), 808–823 | DOI | MR | Zbl

[6] Askey R., “A transplantation theorem for Jacobi coefficients”, Pac. J. Math., 21 (1967), 393–404 | DOI | MR | Zbl

[7] Askey R., Wainger S., “Integrability theorems for Fourier series”, Duke Math. J., 33 (1966), 223–228 | DOI | MR | Zbl

[8] Askey R., Wainger S., “A transplantation theorem for ultraspherical coefficients”, Pac. J. Math., 16 (1966), 393–405 | DOI | MR | Zbl

[9] N. K. Bari, A Treatise on Trigonometric Series, v. I, II, Pergamon Press, Oxford, 1964 | MR

[10] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 5 (1956), 483–522 | Zbl

[11] Benedetto J.J., Heinig H.P., “Weighted Fourier inequalities: New proofs and generalizations”, J. Fourier Anal. Appl., 9:1 (2003), 1–37 | DOI | MR | Zbl

[12] Bennett G., Grosse-Erdmann K.-G., “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Ann., 334:3 (2006), 489–531 | DOI | MR | Zbl

[13] Boas R.P., \textup {Jr.}, Integrability theorems for trigonometric transforms, Springer, Berlin, 1967 | MR | Zbl

[14] Carton-Lebrun C., Heinig H.P., “Weighted Fourier transform inequalities for radially decreasing functions”, SIAM J. Math. Anal., 23:3 (1992), 785–798 | DOI | MR | Zbl

[15] De Carli L., Gorbachev D., Tikhonov S., “Pitt inequalities and restriction theorems for the Fourier transform”, Rev. Mat. Iberoam., 33:3 (2017), 789–808 | DOI | MR | Zbl

[16] Debernardi A., “Weighted norm inequalities for generalized Fourier-type transforms and applications”, Publ. Mat., 64:1 (2020), 3–42 | DOI | MR | Zbl

[17] Debernardi A., “The Boas problem on Hankel transforms”, J. Fourier Anal. Appl, 25:6 (2019), 3310–3341 | DOI | MR | Zbl

[18] Domínguez Ó., Haroske D.D., Tikhonov S., “Embeddings and characterizations of Lipschitz spaces”, J. math. pures appl., 144 (2020), 69–105 ; arXiv: 1911.08369 [math.FA] | DOI | MR | Zbl

[19] Domínguez Ó., Tikhonov S., “Function spaces of logarithmic smoothness: Embeddings and characterizations”, Mem. Amer. Math. Soc. (to appear)

[20] Domínguez Ó., Veraar M., Extensions of the vector-valued Hausdorff–Young inequalities, E-print, 2019, arXiv: 1904.07930 [math.FA]

[21] Dyachenko M., Mukanov A., Tikhonov S., “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Stud. math., 250:3 (2020), 217–234 | DOI | MR | Zbl

[22] Dyachenko M., Nursultanov E., Kankenova A., “On summability of Fourier coefficients of functions from Lebesgue space”, J. Math. Anal. Appl., 419:2 (2014), 959–971 | DOI | MR | Zbl

[23] Dyachenko M., Tikhonov S., “Convergence of trigonometric series with general monotone coefficients”, C. r. Math. Acad. sci. Paris, 345:3 (2007), 123–126 | DOI | MR | Zbl

[24] Dyachenko M., Tikhonov S., “Integrability and continuity of functions represented by trigonometric series: Coefficients criteria”, Stud. math., 193:3 (2009), 285–306 | DOI | MR | Zbl

[25] A. Gogatishvili and V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russ. Math. Surv., 68:4 (2013), 597–664 | DOI | MR | Zbl

[26] M. L. Gol'dman, “Estimates of norms of Hardy-type integral and discrete operators on cones of quasimonotone functions”, Dokl. Math., 63:2 (2001), 250–255 | MR | Zbl

[27] M. L. Goldman, “Sharp estimates for the norms of Hardy-type operators on the cones of quasimonotone functions”, Proc. Steklov Inst. Math., 232 (2001), 109–137 | MR | Zbl

[28] B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh Series and Transforms: Theory and Applications, Kluwer, Dordrecht, 1991 | MR | MR | Zbl

[29] Gorbachev D., Liflyand E., Tikhonov S., “Weighted norm inequalities for integral transforms”, Indiana Univ. Math. J., 67:5 (2018), 1949–2003 | DOI | MR | Zbl

[30] Gorbachev D., Tikhonov S., “Moduli of smoothness and growth properties of Fourier transforms: Two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312 | DOI | MR | Zbl

[31] Hardy G.H., Littlewood J.E., “Notes on the theory of series. XIII: Some new properties of Fourier constants”, J. London Math. Soc., 6 (1931), 3–9 | DOI | MR

[32] Heinig H., “Weighted norm inequalities for classes of operators”, Indiana Univ. Math. J., 33:4 (1984), 573–582 | DOI | MR | Zbl

[33] Jurkat W., Sampson G., “On rearrangement and weight inequalities for the Fourier transform”, Indiana Univ. Math. J., 33:2 (1984), 257–270 | DOI | MR | Zbl

[34] Kellogg C.N., “An extension of the Hausdorff–Young theorem”, Mich. Math. J., 18 (1971), 121–127 | DOI | MR | Zbl

[35] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44:1 (1958), 53–84 | MR

[36] Kufner A., Persson L.-E., Weighted inequalities of Hardy type, World Scientific, Singapore, 2003 | MR | Zbl

[37] Liflyand E., Tikhonov S., “A concept of general monotonicity and applications”, Math. Nachr., 284:8–9 (2011), 1083–1098 | DOI | MR | Zbl

[38] Liflyand E., Tikhonov S., “Two-sided weighted Fourier inequalities”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 5, 11:2 (2012), 341–362 | MR | Zbl

[39] Muckenhoupt B., “Hardy's inequality with weights”, Stud. math., 44 (1972), 31–38 | DOI | MR | Zbl

[40] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L_p$-spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR | Zbl

[41] Nursultanov E., Tikhonov S., “Weighted Fourier inequalities in Lebesgue and Lorentz spaces”, J. Fourier Anal. Appl., 26:4 (2020), 57 | DOI | MR | Zbl

[42] Pitt H.R., “Theorems on Fourier series and power series”, Duke Math. J., 3:4 (1937), 747–755 | DOI | MR

[43] Rastegari J., Sinnamon G., “Weighted Fourier inequalities via rearrangements”, J. Fourier Anal. Appl., 24:5 (2018), 1225–1248 | DOI | MR | Zbl

[44] Sagher Y., “An application of interpolation theory to Fourier series”, Stud. math., 41 (1972), 169–181 | DOI | MR | Zbl

[45] Stein E.M., “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl

[46] S. Yu. Tikhonov, “On the integrability of trigonometric series”, Math. Notes, 78:3–4 (2005), 437–442 | DOI | MR | Zbl

[47] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[48] Tikhonov S., “Best approximation and moduli of smoothness: Computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39 | DOI | MR | Zbl

[49] Ulyanov P.L., “Primenenie $A$-integrirovaniya k odnomu klassu trigonometricheskikh ryadov”, Mat. sb., 35:3 (1954), 469–490 | Zbl

[50] Young W.H., “On the Fourier series of bounded functions”, Proc. London Math. Soc., 12 (1913), 41–70 | DOI | MR | Zbl

[51] Yu D., Zhou P., Zhou S., “On $L^p$ integrability and convergence of trigonometric series”, Stud. Math., 182:3 (2007), 215–226 | DOI | MR | Zbl

[52] Zygmund A., Trigonometric series, v. 2, Univ. Press, Cambridge, 1959 ; Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965; A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl | Zbl