Weakly Canceling Operators and Singular Integrals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 259-271

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an elementary harmonic analysis approach to canceling and weakly canceling differential operators, which allows us to extend these notions to the anisotropic setting and replace differential operators with Fourier multiplies with mild smoothness regularity. In this more general setting of anisotropic Fourier multipliers, we prove the inequality $\|f\|_{L_\infty } \lesssim \|Af\|_{L_1}$ if $A$ is a weakly canceling operator of order $d$ and the inequality $\|f\|_{L_2} \lesssim \|Af\|_{L_1}$ if $A$ is a canceling operator of order $d/2$, provided $f$ is a function of $d$ variables.
@article{TM_2021_312_a15,
     author = {D. M. Stolyarov},
     title = {Weakly {Canceling} {Operators} and {Singular} {Integrals}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a15/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - Weakly Canceling Operators and Singular Integrals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 259
EP  - 271
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a15/
LA  - ru
ID  - TM_2021_312_a15
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T Weakly Canceling Operators and Singular Integrals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 259-271
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a15/
%G ru
%F TM_2021_312_a15
D. M. Stolyarov. Weakly Canceling Operators and Singular Integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 259-271. http://geodesic.mathdoc.fr/item/TM_2021_312_a15/