On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 236-250

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $g$ be a Lebesgue measurable function on an interval $I\subset \mathbb R$. We find conditions on $g$ under which the mapping $f\mapsto \int _I g(x)(Df)(x)\,dx$ is a continuous linear functional on a weighted first-order Sobolev space $W_{p,p}^1(I)$; we also obtain estimates for the norm of this functional in $[W_{p,p}^1(I)]^*$.
@article{TM_2021_312_a13,
     author = {D. V. Prokhorov},
     title = {On a {Class} of {Functionals} on a {Weighted} {First-Order} {Sobolev} {Space} on the {Real} {Line}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {236--250},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a13/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 236
EP  - 250
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a13/
LA  - ru
ID  - TM_2021_312_a13
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 236-250
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a13/
%G ru
%F TM_2021_312_a13
D. V. Prokhorov. On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 236-250. http://geodesic.mathdoc.fr/item/TM_2021_312_a13/