Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 22-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sharp order estimates for the error of optimal cubature formulas on the Nikol'skii–Besov and Lizorkin–Triebel type spaces, $B^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$ and $L^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$, respectively, for a number of relations between the parameters $s$, $p$, $q$, and $\mathtt {m}$ ($s=(s_1,\dots ,s_n)\in \mathbb R^n_+$, $1\leq p,q\leq \infty $, $\mathtt {m}=(m_1,\dots ,m_n)\in \mathbb N ^n$, $m=m_1+\dots +m_n$). Lower estimates are proved via Bakhvalov's method. Upper estimates are based on Frolov's cubature formulas.
@article{TM_2021_312_a1,
     author = {D. B. Bazarkhanov},
     title = {Optimal {Cubature} {Formulas} on {Classes} of {Periodic} {Functions} in {Several} {Variables}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {22--42},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 22
EP  - 42
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a1/
LA  - ru
ID  - TM_2021_312_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 22-42
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a1/
%G ru
%F TM_2021_312_a1
D. B. Bazarkhanov. Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 22-42. http://geodesic.mathdoc.fr/item/TM_2021_312_a1/