Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 22-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sharp order estimates for the error of optimal cubature formulas on the Nikol'skii–Besov and Lizorkin–Triebel type spaces, $B^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$ and $L^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$, respectively, for a number of relations between the parameters $s$, $p$, $q$, and $\mathtt {m}$ ($s=(s_1,\dots ,s_n)\in \mathbb R^n_+$, $1\leq p,q\leq \infty $, $\mathtt {m}=(m_1,\dots ,m_n)\in \mathbb N ^n$, $m=m_1+\dots +m_n$). Lower estimates are proved via Bakhvalov's method. Upper estimates are based on Frolov's cubature formulas.
@article{TM_2021_312_a1,
     author = {D. B. Bazarkhanov},
     title = {Optimal {Cubature} {Formulas} on {Classes} of {Periodic} {Functions} in {Several} {Variables}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {22--42},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 22
EP  - 42
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a1/
LA  - ru
ID  - TM_2021_312_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 22-42
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a1/
%G ru
%F TM_2021_312_a1
D. B. Bazarkhanov. Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 22-42. http://geodesic.mathdoc.fr/item/TM_2021_312_a1/

[1] Bakhvalov N.S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. Mosk. un-ta. Matematika, mekhanika, astronomiya, fizika, khimiya, 1959, no. 4, 3–18

[2] Bakhvalov N.S., “Ob optimalnykh otsenkakh skhodimosti kvadraturnykh protsessov i metodov integrirovaniya tipa Monte-Karlo na klassakh funktsii”, ZhVMiMF, 4:4 (dop.) (1964), 5–63 | MR | Zbl

[3] N. S. Bakhvalov, “A lower bound for the asymptotic characteristics of classes of functions with dominating mixed derivative”, Math. Notes, 12:6 (1972), 833–838 | DOI | MR | Zbl

[4] D. B. Bazarkhanov, “Characterizations of the Nikol'skii–Besov and Lizorkin–Triebel function spaces of mixed smoothness”, Proc. Steklov Inst. Math., 243 (2003), 46–58 | MR | Zbl

[5] D. B. Bazarkhanov, “Equivalent (quasi)norms for certain function spaces of generalized mixed smoothness”, Proc. Steklov Inst. Math., 248 (2005), 21–34 | MR | Zbl

[6] Bazarkhanov D.B., “Prostranstva funktsii peremennoi smeshannoi gladkosti. I”, Mat. zhurn. (Almaty), 6:4 (2006), 32–40 | MR

[7] Bazarkhanov D.B., “Prostranstva funktsii peremennoi smeshannoi gladkosti. II”, Mat. zhurn. (Almaty), 7:3 (2007), 16–27 | MR | Zbl

[8] D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Proc. Steklov Inst. Math., 269 (2010), 2–24 | DOI | MR | Zbl

[9] Bazarkhanov D.B., “Predstavleniya i kharakterizatsii nekotorykh funktsionalnykh prostranstv”, Mat. zhurn. (Almaty), 12:3 (2012), 43–52

[10] D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Proc. Steklov Inst. Math., 284 (2014), 2–31 | DOI | MR | Zbl

[11] Bazarkhanov D.B., “Optimal numerical integration on classes of smooth functions in several variables”, Kazakh Math. J., 20:3 (2020), 101–110

[12] O. V. Besov, “Interpolation, embedding, and extension of spaces of functions of variable smoothness”, Proc. Steklov Inst. Math., 248 (2005), 47–58 | MR | Zbl

[13] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl

[14] Bykovskii V.A., “Ekstremalnye kubaturnye formuly dlya anizotropnykh klassov”, Dalnevost. mat. zhurn., 19:1 (2019), 10–19 | MR | Zbl

[15] V. V. Dubinin, “Cubature formulas for classes of functions with bounded mixed difference”, Sb. Math., 76:2 (1993), 283–292 | DOI | MR | Zbl

[16] V. V. Dubinin, “Cubature formulae for Besov classes”, Izv. Math., 61:2 (1997), 259–283 | DOI | MR | Zbl

[17] Dũng D., Temlyakov V., Ullrich T., Hyperbolic cross approximation, Birkhäuser, Cham, 2018 | MR | Zbl

[18] Fefferman C., Stein E.M., “Some maximal inequalities”, Amer. J. Math., 93 (1971), 107–115 | DOI | MR | Zbl

[19] K. K. Frolov, “Upper error bounds for quadrature formulas on function classes”, Sov. Math., Dokl., 17 (1977), 1665–1669 | MR | Zbl

[20] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland Math. Libr., 37, North-Holland, Amsterdam, 1987 | MR | Zbl

[21] Hlawka E., “Zur angenäherten Berechnung mehrfacher Integrale”, Monatsh. Math., 66 (1962), 140–151 | DOI | MR | Zbl

[22] G. A. Kalyabin, “Theorems on extension, multipliers and diffeomorphisms for generalized Sobolev–Liouville classes in domains with a Lipschitz boundary”, Proc. Steklov Inst. Math., 172 (1987), 191–205 | MR | Zbl | Zbl

[23] N. M. Korobov, “Approximate calculation of multiple integrals”, Dokl. Akad. Nauk SSSR, 124:6 (1959), 1207–1210 | MR | Zbl

[24] Nguyen V.K., Ullrich M., Ullrich T., “Change of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube”, Constr. Approx., 46:1 (2017), 69–108 | DOI | MR | Zbl

[25] V. S. Rychkov, “On a theorem of Bui, Paluszyński, and Taibleson”, Proc. Steklov Inst. Math., 227 (1999), 280–292 | MR | Zbl

[26] Rychkov V.S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc., 60:1 (1999), 237–257 | DOI | MR | Zbl

[27] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl

[28] M. M. Skriganov, “Constructions of uniform distributions in terms of geometry of numbers”, St. Petersburg Math. J., 6:3 (1995), 635–664 | MR | Zbl

[29] S. L. Sobolev, Cubature Formulas and Modern Analysis: An Introduction, Gordon and Breach Sci. Publ., Montreux, 1992 | MR | MR | Zbl

[30] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[31] V. N. Temlyakov, “On a way of obtaining lower estimates for the errors of quadrature formulas”, Math. USSR, Sb., 71:1 (1992), 247–257 | DOI | MR | Zbl

[32] V. N. Temlyakov, “Error estimates for Fibonacci quadrature formulas for classes of functions with bounded mixed derivative”, Proc. Steklov Inst. Math., 200 (1993), 359–367 | MR | Zbl

[33] V. N. Temlyakov, “On error estimates for cubature formulas”, Proc. Steklov Inst. Math., 207 (1995), 299–309 | MR | Zbl

[34] Temlyakov V., Multivariate approximation, Cambridge Univ. Press, Cambridge, 2018 | MR | Zbl

[35] Triebel H., Theory of function spaces II, Birkhäuser, Basel, 1992 | MR | Zbl

[36] Ullrich M., Ullrich T., “The role of Frolov's cubature formula for functions with bounded mixed derivative”, SIAM J. Numer. Anal., 54:2 (2016), 969–993 | DOI | MR | Zbl

[37] Ullrich T., Local mean characterization of Besov–Triebel–Lizorkin type spaces with dominating mixed smoothness on rectangular domains, Preprint, Univ. Bonn, Bonn, 2008

[38] Vybiral J., Function spaces with dominating mixed smoothness, Diss. Math., 436, Inst. Mat. PAN, Warsaw, 2006 | MR