Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 140-163
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that there exists a natural Poisson–Lie algebra associated to a singular symplectic structure $\omega $. We construct Poisson–Lie algebras for the Martinet and Roussarie types of singularities. In the special case when the singular symplectic structure is given by the pullback from the Darboux form, $\omega =F^*\omega _0$, this Poisson–Lie algebra is a basic symplectic invariant of the singularity of the smooth mapping $F$ into the symplectic space $(\mathbb{R} ^{2n},\omega _0)$. The case of $A_k$ singularities of pullbacks is considered, and Poisson–Lie algebras for $\Sigma _{2,0}$, $\Sigma _{2,2,0}^\mathrm{e}$ and $\Sigma _{2,2,0}^\mathrm{h}$ stable singularities of $2$-forms are calculated.
Keywords:
implicit Hamiltonian system, solvability, singularities, singular symplectic structures.
Mots-clés : Poisson–Lie algebra
Mots-clés : Poisson–Lie algebra
@article{TM_2020_311_a7,
author = {T. Fukuda and S. Janeczko},
title = {Poisson--Lie {Algebras} and {Singular} {Symplectic} {Forms} {Associated} to {Corank} 1 {Type} {Singularities}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {140--163},
publisher = {mathdoc},
volume = {311},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a7/}
}
TY - JOUR AU - T. Fukuda AU - S. Janeczko TI - Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 140 EP - 163 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a7/ LA - ru ID - TM_2020_311_a7 ER -
%0 Journal Article %A T. Fukuda %A S. Janeczko %T Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 140-163 %V 311 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_311_a7/ %G ru %F TM_2020_311_a7
T. Fukuda; S. Janeczko. Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 140-163. http://geodesic.mathdoc.fr/item/TM_2020_311_a7/