Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 140-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that there exists a natural Poisson–Lie algebra associated to a singular symplectic structure $\omega $. We construct Poisson–Lie algebras for the Martinet and Roussarie types of singularities. In the special case when the singular symplectic structure is given by the pullback from the Darboux form, $\omega =F^*\omega _0$, this Poisson–Lie algebra is a basic symplectic invariant of the singularity of the smooth mapping $F$ into the symplectic space $(\mathbb{R} ^{2n},\omega _0)$. The case of $A_k$ singularities of pullbacks is considered, and Poisson–Lie algebras for $\Sigma _{2,0}$, $\Sigma _{2,2,0}^\mathrm{e}$ and $\Sigma _{2,2,0}^\mathrm{h}$ stable singularities of $2$-forms are calculated.
Keywords: implicit Hamiltonian system, solvability, singularities, singular symplectic structures.
Mots-clés : Poisson–Lie algebra
@article{TM_2020_311_a7,
     author = {T. Fukuda and S. Janeczko},
     title = {Poisson--Lie {Algebras} and {Singular} {Symplectic} {Forms} {Associated} to {Corank} 1 {Type} {Singularities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {140--163},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a7/}
}
TY  - JOUR
AU  - T. Fukuda
AU  - S. Janeczko
TI  - Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 140
EP  - 163
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a7/
LA  - ru
ID  - TM_2020_311_a7
ER  - 
%0 Journal Article
%A T. Fukuda
%A S. Janeczko
%T Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 140-163
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a7/
%G ru
%F TM_2020_311_a7
T. Fukuda; S. Janeczko. Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 140-163. http://geodesic.mathdoc.fr/item/TM_2020_311_a7/

[1] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, v. 1, Monogr. Math., 82, The Classification of Critical Points, Caustics and Wave Fronts, Birkhäuser, Boston, 1985 | MR | Zbl

[2] Bruce J.W., Giblin P.J., Curves and singularities, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[3] A. A. Davydov, “Normal form of a differential equation, not solvable for the derivative, in a neighborhood of a singular point”, Funct. Anal. Appl., 19:2 (1985), 81–89 | DOI | MR | Zbl

[4] Davydov A.A., Basto-Gonçalves J., “Controllability of generic inequalities near singular points”, J. Dyn. Control Syst., 7:1 (2001), 77–99 | DOI | MR | Zbl

[5] Fukuda T., “Local topological properties of differentiable mappings. I”, Invent. math., 65 (1981), 227–250 | DOI | MR | Zbl

[6] Fukuda T., Janeczko S., “Singularities of implicit differential systems and their integrability”, Geometric singularity theory, Banach Cent. Publ., 65, Pol. Acad. Sci., Inst. Math., Warsaw, 2004, 23–47 | DOI | MR | Zbl

[7] Fukuda T., Janeczko S., “Global properties of integrable implicit Hamiltonian systems”, Singularity theory, Proc. 2005 Marseille Singularity Sch. Conf., World Scientific, Singapore, 2007, 593–611 | DOI | MR | Zbl

[8] Fukuda T., Janeczko S., “On the Poisson algebra of a singular map”, J. Geom. Phys., 86 (2014), 194–202 | DOI | MR | Zbl

[9] Fukuda T., Janeczko S., “Symplectic singularities and solvable Hamiltonian mappings”, Demonstr. math., 48:2 (2015), 118–146 | MR | Zbl

[10] Golubitsky M., Tischler D., “An example of moduli for singular symplectic forms”, Invent. math., 38 (1977), 219–225 | DOI | MR | Zbl

[11] Hofer H., Zehnder E., Symplectic invariants and Hamiltonian dynamics, Birkhäuser Adv. Texts, Birkhäuser, Basel, 1994 | MR | Zbl

[12] Ishikawa G., “Symplectic and Lagrange stabilities of open Whitney umbrellas”, Invent. math., 126:2 (1996), 215–234 | DOI | MR | Zbl

[13] Ishikawa G., “Determinacy, transversality and Lagrange stability”, Geometry and topology of caustics—CAUSTICS'98, Proc. Banach Cent. Symp. (Warsaw, 1998), Banach Cent. Publ., 50, Pol. Acad. Sci., Inst. Math., Warsaw, 1999, 123–135 | DOI | MR | Zbl

[14] Janeczko S., “On implicit Lagrangian differential systems”, Ann. Pol. math., 74 (2000), 133–141 | DOI | MR | Zbl

[15] Martinet J., “Sur les singularités des formes différentielles”, Ann. Inst. Fourier, 20:1 (1970), 95–178 | DOI | MR | Zbl

[16] Martinet J., “Miscellaneous results and problems about differential forms and differential systems”, Global analysis and applications, Int. Sem. Course (Trieste, 1972), v. 3, Int. At. Energy Agency, Vienna, 1974, 41–46 | MR | Zbl

[17] B. Morin, “Formes canoniques des singularités d'une application différentiable”, C. R. Acad. Sci. Paris, 260 (1965), 5662–5665, 6503–6506 | MR | MR | Zbl

[18] Roussarie R., Modèles locaux de champs et de formes, Astérisque, 30, Soc. math. France, Paris, 1976 | MR

[19] Takens F., “Implicit differential equations: Some open problems”, Singularités d'applications différentiables, Lect. Notes Math., 535, Springer, Berlin, 1976, 237–253 | DOI | MR

[20] Wassermann G., Stability of unfoldings, Lect. Notes Math., 393, Springer, Berlin, 1974 | DOI | MR | Zbl

[21] Weinstein A., Lectures on symplectic manifolds, CBMS Reg. Conf. Ser. Math., 29, Amer. Math. Soc., Providence, RI, 1977 | DOI | MR | Zbl