Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 140-163

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that there exists a natural Poisson–Lie algebra associated to a singular symplectic structure $\omega $. We construct Poisson–Lie algebras for the Martinet and Roussarie types of singularities. In the special case when the singular symplectic structure is given by the pullback from the Darboux form, $\omega =F^*\omega _0$, this Poisson–Lie algebra is a basic symplectic invariant of the singularity of the smooth mapping $F$ into the symplectic space $(\mathbb{R} ^{2n},\omega _0)$. The case of $A_k$ singularities of pullbacks is considered, and Poisson–Lie algebras for $\Sigma _{2,0}$, $\Sigma _{2,2,0}^\mathrm{e}$ and $\Sigma _{2,2,0}^\mathrm{h}$ stable singularities of $2$-forms are calculated.
Keywords: implicit Hamiltonian system, solvability, singularities, singular symplectic structures.
Mots-clés : Poisson–Lie algebra
@article{TM_2020_311_a7,
     author = {T. Fukuda and S. Janeczko},
     title = {Poisson--Lie {Algebras} and {Singular} {Symplectic} {Forms} {Associated} to {Corank} 1 {Type} {Singularities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {140--163},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a7/}
}
TY  - JOUR
AU  - T. Fukuda
AU  - S. Janeczko
TI  - Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 140
EP  - 163
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a7/
LA  - ru
ID  - TM_2020_311_a7
ER  - 
%0 Journal Article
%A T. Fukuda
%A S. Janeczko
%T Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 140-163
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a7/
%G ru
%F TM_2020_311_a7
T. Fukuda; S. Janeczko. Poisson--Lie Algebras and Singular Symplectic Forms Associated to Corank 1 Type Singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 140-163. http://geodesic.mathdoc.fr/item/TM_2020_311_a7/