Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a6, author = {Pavel Exner}, title = {Leaky quantum structures}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {123--139}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a6/} }
Pavel Exner. Leaky quantum structures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 123-139. http://geodesic.mathdoc.fr/item/TM_2020_311_a6/
[1] Adami R., Teta A., “On the Aharonov–Bohm Hamiltonian”, Lett. Math. Phys., 43:1 (1998), 43–54 | DOI | MR
[2] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl
[3] Antoine J.-P., Gesztesy F., Shabani J., “Exactly solvable models of sphere interactions in quantum mechanics”, J. Phys. A: Math. Gen., 20:12 (1987), 3687–3712 | DOI | MR
[4] Arrizabalaga N., Le Treust L., Raymond N., “On the MIT bag model in the non-relativistic limit”, Commun. Math. Phys., 354:2 (2017), 641–669 | DOI | MR | Zbl
[5] Arrizabalaga N., Mas A., Vega L., “Shell interactions for Dirac operators”, J. math. pures appl., 102:4 (2014), 617–639 | DOI | MR | Zbl
[6] Arrizabalaga N., Mas A., Vega L., “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators”, Commun. Math. Phys., 344:2 (2016), 483–505 | DOI | MR | Zbl
[7] Behrndt J., Exner P., Holzmann M., Lotoreichik V., “Approximation of Schrödinger operators with $\delta $-interactions supported on hypersurfaces”, Math. Nachr., 290:8–9 (2017), 1215–1248 | DOI | MR | Zbl
[8] Behrndt J., Exner P., Holzmann M., Lotoreichik V., “On the spectral properties of Dirac operators with electrostatic $\delta $-shell interactions”, J. math. pures appl., 111 (2018), 47–78 | DOI | MR | Zbl
[9] Behrndt J., Exner P., Holzmann M., Lotoreichik V., “On Dirac operators in $\mathbb R^3$ with electrostatic and Lorentz scalar $\delta $-shell interactions”, Quantum Stud. Math. Found., 6:3 (2019), 295–314 | DOI | MR | Zbl
[10] Behrndt J., Exner P., Lotoreichik V., “Schrödinger operators with $\delta $- and $\delta '$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26:8 (2014), 1450015 | DOI | MR | Zbl
[11] Behrndt J., Exner P., Lotoreichik V., “Schrödinger operators with $\delta $-interactions supported on conical surfaces”, J. Phys. A: Math. Theor., 47:35 (2014), 355202 | DOI | MR | Zbl
[12] Behrndt J., Holzmann M., “On Dirac operators with electrostatic $\delta $-shell interactions of critical strength”, J. Spectr. Theory, 10:1 (2020), 147–184 | DOI | MR | Zbl
[13] Behrndt J., Holzmann M., Ourmières-Bonafos T., Pankrashkin K., “Two-dimensional Dirac operators with singular interactions supported on closed curves”, J. Funct. Anal., 279:8 (2020), 108700 ; arXiv: 1907.05436 [math.AP] | DOI | MR | Zbl
[14] Benguria R.D., Fournais S., Stockmeyer E., Van Den Bosch H., “Self-adjointness of two-dimensional Dirac operators on domains”, Ann. Henri Poincaré, 18:4 (2017), 1371–1383 | DOI | MR | Zbl
[15] Benguria R.D., Fournais S., Stockmeyer E., Van Den Bosch H., “Spectral gaps of Dirac operators describing graphene quantum dots”, Math. Phys. Anal. Geom., 20:2 (2017), 11 | DOI | MR | Zbl
[16] Brasche J.F., Exner P., Kuperin Yu.A., Šeba P., “Schrödinger operators with singular interactions”, J. Math. Anal. Appl., 184:1 (1994), 112–139 | DOI | MR | Zbl
[17] Brasche J.F., Figari R., Teta A., “Singular Schrödinger operators as limits of point interaction Hamiltonians”, Potential Anal., 8:2 (1998), 163–178 | DOI | MR | Zbl
[18] Brasche J.F., Ožanová K., “Convergence of Schrödinger operators”, SIAM J. Math. Anal., 39:1 (2007), 281–297 | DOI | MR | Zbl
[19] Brown B.M., Eastham M.S.P., Hinz A.M., Kriecherbauer T., McCormack D.K.R., Schmidt K.M., “Welsh eigenvalues of radially periodic Schrödinger operators”, J. Math. Anal. Appl., 225:1 (1998), 347–357 | DOI | MR | Zbl
[20] Da̧browski L., Šťovíček P., “Aharonov–Bohm effect with $\delta $-type interaction”, J. Math. Phys., 39:1 (1998), 47–62 | DOI | MR
[21] Dittrich J., Scattering of particles bounded to an infinite planar curve, E-print, 2019, arXiv: 1912.03958 [math-ph] | MR
[22] Dittrich J., Exner P., Kühn Ch., Pankrashkin K., “On eigenvalue asymptotics for strong $\delta $-interactions supported by surfaces with boundaries”, Asymptotic Anal., 97:1–2 (2016), 1–25 | MR | Zbl
[23] Dittrich J., Exner P., Šeba P., “Dirac operators with a spherically symmetric $\delta $-shell interaction”, J. Math. Phys., 30:12 (1989), 2875–2882 | DOI | MR | Zbl
[24] Exner P., “Leaky quantum graphs: A review”, Analysis on graphs and its applications, Proc. Symp. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008, 523–564 | DOI | MR | Zbl
[25] Exner P., “Spectral optimization for singular Schrödinger operators”, Oper. Matrices, 14:3 (2020), 705–716 | DOI | MR
[26] Exner P., Fraas M., “On the dense point and absolutely continuous spectrum for Hamiltonians with concentric $\delta $ shells”, Lett. Math. Phys., 82:1 (2007), 25–37 | DOI | MR | Zbl
[27] Exner P., Ichinose T., “Geometrically induced spectrum in curved leaky wires”, J. Phys. A: Math. Gen., 34:7 (2001), 1439–1450 | DOI | MR | Zbl
[28] Exner P., Kondej S., “Curvature-induced bound states for a $\delta $ interaction supported by a curve in $\mathbb R^3$”, Ann. Henri Poincaré, 3:5 (2002), 967–981 | DOI | MR | Zbl
[29] Exner P., Kondej S., “Bound states due to a strong $\delta $ interaction supported by a curved surface”, J. Phys. A: Math. Gen., 36:2 (2003), 443–457 | DOI | MR | Zbl
[30] Exner P., Kondej S., “Scattering by local deformations of a straight leaky wire”, J. Phys. A: Math. Gen., 38:22 (2005), 4865–4874 | DOI | MR | Zbl
[31] Exner P., Kondej S., “Gap asymptotics in a weakly bent leaky quantum wire”, J. Phys. A: Math. Theor., 48:49 (2015), 495301 | DOI | MR | Zbl
[32] Exner P., Kondej S., “Aharonov and Bohm versus Welsh eigenvalues”, Lett. Math. Phys., 108:9 (2018), 2153–2167 | DOI | MR | Zbl
[33] Exner P., Kondej S., Lotoreichik V., “Asymptotics of the bound state induced by $\delta $-interaction supported on a weakly deformed plane”, J. Math. Phys., 59:1 (2018), 013051 | DOI | MR
[34] Exner P., Kovařík H., Quantum waveguides, Springer, Cham, 2015 | MR | Zbl
[35] Exner P., Němcová K., “Leaky quantum graphs: Approximations by point-interaction Hamiltonians”, J. Phys. A: Math. Gen., 36:40 (2003), 10173–10193 | DOI | MR | Zbl
[36] Exner P., Pankrashkin K., “Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by an open arc”, Commun. Partial Diff. Eqns., 39:2 (2014), 193–212 | DOI | MR | Zbl
[37] Exner P., Tater M., “Spectra of soft ring graphs”, Waves Random Media, 14:1 (2004), S47–S60 | DOI | MR | Zbl
[38] Hagedorn G.A., Meller B., “Resonances in a box”, J. Math. Phys., 41:1 (2000), 103–117 | DOI | MR | Zbl
[39] Kondej S., Lotoreichik V., “Weakly coupled bound state of 2-D Schrödinger operator with potential-measure”, J. Math. Anal. Appl., 420:2 (2014), 1416–1438 | DOI | MR | Zbl
[40] Lotoreichik V., Ourmières-Bonafos T., “On the bound states of Schrödinger operators with $\delta $-interactions on conical surfaces”, Commun. Partial Diff. Eqns., 41:6 (2016), 999–1028 | DOI | MR | Zbl
[41] Lotoreichik V., Ourmières-Bonafos T., “A sharp upper bound on the spectral gap for graphene quantum dots”, Math. Phys. Anal. Geom., 22:2 (2019), 13 | DOI | MR | Zbl
[42] Mas A., Pizzichillo F., “Klein's paradox and the relativistic $\delta $-shell interaction in $\mathbb R^3$”, Anal. PDE, 11:3 (2018), 705–744 | DOI | MR | Zbl
[43] Ourmières-Bonafos T., Pankrashkin K., “Discrete spectrum of interactions concentrated near conical surfaces”, Appl. Anal., 97:9 (2018), 1628–1649 | DOI | MR | Zbl
[44] Posilicano A., “Boundary triples and Weyl functions for singular perturbations of self-adjoint operators”, Methods Funct. Anal. Topol., 10:2 (2004), 57–63 | MR | Zbl
[45] Schmidt K.M., “Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm–Liouville operators”, Commun. Math. Phys., 211:2 (2000), 645–685 | DOI | MR
[46] Šeba P., “Klein's paradox and the relativistic point interaction”, Lett. Math. Phys., 18:1 (1989), 77–86 | DOI | MR | Zbl