Leaky quantum structures
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 123-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper reviews spectral properties of a class of singular Schrödinger operators with the interaction supported by manifolds or complexes of codimension one, in particular, their relations to the geometric setting of the problem. We describe how they can be approximated by operators of other classes and how such approximations can be used. Furthermore, we present asymptotic expansions of the eigenvalues in terms of the parameters characterizing the coupling strength and geometric deformations. We also give an example illustrating the influence of a magnetic field of the Aharonov-Bohm type and describe briefly results about singular perturbation of Dirac operators.
Keywords: singular Schrödinger operators, codimension one manifolds, spectral properties, asymptotic expansions, Dirac operators.
@article{TM_2020_311_a6,
     author = {Pavel Exner},
     title = {Leaky quantum structures},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {123--139},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a6/}
}
TY  - JOUR
AU  - Pavel Exner
TI  - Leaky quantum structures
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 123
EP  - 139
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a6/
LA  - ru
ID  - TM_2020_311_a6
ER  - 
%0 Journal Article
%A Pavel Exner
%T Leaky quantum structures
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 123-139
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a6/
%G ru
%F TM_2020_311_a6
Pavel Exner. Leaky quantum structures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 123-139. http://geodesic.mathdoc.fr/item/TM_2020_311_a6/

[1] Adami R., Teta A., “On the Aharonov–Bohm Hamiltonian”, Lett. Math. Phys., 43:1 (1998), 43–54 | DOI | MR

[2] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl

[3] Antoine J.-P., Gesztesy F., Shabani J., “Exactly solvable models of sphere interactions in quantum mechanics”, J. Phys. A: Math. Gen., 20:12 (1987), 3687–3712 | DOI | MR

[4] Arrizabalaga N., Le Treust L., Raymond N., “On the MIT bag model in the non-relativistic limit”, Commun. Math. Phys., 354:2 (2017), 641–669 | DOI | MR | Zbl

[5] Arrizabalaga N., Mas A., Vega L., “Shell interactions for Dirac operators”, J. math. pures appl., 102:4 (2014), 617–639 | DOI | MR | Zbl

[6] Arrizabalaga N., Mas A., Vega L., “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators”, Commun. Math. Phys., 344:2 (2016), 483–505 | DOI | MR | Zbl

[7] Behrndt J., Exner P., Holzmann M., Lotoreichik V., “Approximation of Schrödinger operators with $\delta $-interactions supported on hypersurfaces”, Math. Nachr., 290:8–9 (2017), 1215–1248 | DOI | MR | Zbl

[8] Behrndt J., Exner P., Holzmann M., Lotoreichik V., “On the spectral properties of Dirac operators with electrostatic $\delta $-shell interactions”, J. math. pures appl., 111 (2018), 47–78 | DOI | MR | Zbl

[9] Behrndt J., Exner P., Holzmann M., Lotoreichik V., “On Dirac operators in $\mathbb R^3$ with electrostatic and Lorentz scalar $\delta $-shell interactions”, Quantum Stud. Math. Found., 6:3 (2019), 295–314 | DOI | MR | Zbl

[10] Behrndt J., Exner P., Lotoreichik V., “Schrödinger operators with $\delta $- and $\delta '$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26:8 (2014), 1450015 | DOI | MR | Zbl

[11] Behrndt J., Exner P., Lotoreichik V., “Schrödinger operators with $\delta $-interactions supported on conical surfaces”, J. Phys. A: Math. Theor., 47:35 (2014), 355202 | DOI | MR | Zbl

[12] Behrndt J., Holzmann M., “On Dirac operators with electrostatic $\delta $-shell interactions of critical strength”, J. Spectr. Theory, 10:1 (2020), 147–184 | DOI | MR | Zbl

[13] Behrndt J., Holzmann M., Ourmières-Bonafos T., Pankrashkin K., “Two-dimensional Dirac operators with singular interactions supported on closed curves”, J. Funct. Anal., 279:8 (2020), 108700 ; arXiv: 1907.05436 [math.AP] | DOI | MR | Zbl

[14] Benguria R.D., Fournais S., Stockmeyer E., Van Den Bosch H., “Self-adjointness of two-dimensional Dirac operators on domains”, Ann. Henri Poincaré, 18:4 (2017), 1371–1383 | DOI | MR | Zbl

[15] Benguria R.D., Fournais S., Stockmeyer E., Van Den Bosch H., “Spectral gaps of Dirac operators describing graphene quantum dots”, Math. Phys. Anal. Geom., 20:2 (2017), 11 | DOI | MR | Zbl

[16] Brasche J.F., Exner P., Kuperin Yu.A., Šeba P., “Schrödinger operators with singular interactions”, J. Math. Anal. Appl., 184:1 (1994), 112–139 | DOI | MR | Zbl

[17] Brasche J.F., Figari R., Teta A., “Singular Schrödinger operators as limits of point interaction Hamiltonians”, Potential Anal., 8:2 (1998), 163–178 | DOI | MR | Zbl

[18] Brasche J.F., Ožanová K., “Convergence of Schrödinger operators”, SIAM J. Math. Anal., 39:1 (2007), 281–297 | DOI | MR | Zbl

[19] Brown B.M., Eastham M.S.P., Hinz A.M., Kriecherbauer T., McCormack D.K.R., Schmidt K.M., “Welsh eigenvalues of radially periodic Schrödinger operators”, J. Math. Anal. Appl., 225:1 (1998), 347–357 | DOI | MR | Zbl

[20] Da̧browski L., Šťovíček P., “Aharonov–Bohm effect with $\delta $-type interaction”, J. Math. Phys., 39:1 (1998), 47–62 | DOI | MR

[21] Dittrich J., Scattering of particles bounded to an infinite planar curve, E-print, 2019, arXiv: 1912.03958 [math-ph] | MR

[22] Dittrich J., Exner P., Kühn Ch., Pankrashkin K., “On eigenvalue asymptotics for strong $\delta $-interactions supported by surfaces with boundaries”, Asymptotic Anal., 97:1–2 (2016), 1–25 | MR | Zbl

[23] Dittrich J., Exner P., Šeba P., “Dirac operators with a spherically symmetric $\delta $-shell interaction”, J. Math. Phys., 30:12 (1989), 2875–2882 | DOI | MR | Zbl

[24] Exner P., “Leaky quantum graphs: A review”, Analysis on graphs and its applications, Proc. Symp. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008, 523–564 | DOI | MR | Zbl

[25] Exner P., “Spectral optimization for singular Schrödinger operators”, Oper. Matrices, 14:3 (2020), 705–716 | DOI | MR

[26] Exner P., Fraas M., “On the dense point and absolutely continuous spectrum for Hamiltonians with concentric $\delta $ shells”, Lett. Math. Phys., 82:1 (2007), 25–37 | DOI | MR | Zbl

[27] Exner P., Ichinose T., “Geometrically induced spectrum in curved leaky wires”, J. Phys. A: Math. Gen., 34:7 (2001), 1439–1450 | DOI | MR | Zbl

[28] Exner P., Kondej S., “Curvature-induced bound states for a $\delta $ interaction supported by a curve in $\mathbb R^3$”, Ann. Henri Poincaré, 3:5 (2002), 967–981 | DOI | MR | Zbl

[29] Exner P., Kondej S., “Bound states due to a strong $\delta $ interaction supported by a curved surface”, J. Phys. A: Math. Gen., 36:2 (2003), 443–457 | DOI | MR | Zbl

[30] Exner P., Kondej S., “Scattering by local deformations of a straight leaky wire”, J. Phys. A: Math. Gen., 38:22 (2005), 4865–4874 | DOI | MR | Zbl

[31] Exner P., Kondej S., “Gap asymptotics in a weakly bent leaky quantum wire”, J. Phys. A: Math. Theor., 48:49 (2015), 495301 | DOI | MR | Zbl

[32] Exner P., Kondej S., “Aharonov and Bohm versus Welsh eigenvalues”, Lett. Math. Phys., 108:9 (2018), 2153–2167 | DOI | MR | Zbl

[33] Exner P., Kondej S., Lotoreichik V., “Asymptotics of the bound state induced by $\delta $-interaction supported on a weakly deformed plane”, J. Math. Phys., 59:1 (2018), 013051 | DOI | MR

[34] Exner P., Kovařík H., Quantum waveguides, Springer, Cham, 2015 | MR | Zbl

[35] Exner P., Němcová K., “Leaky quantum graphs: Approximations by point-interaction Hamiltonians”, J. Phys. A: Math. Gen., 36:40 (2003), 10173–10193 | DOI | MR | Zbl

[36] Exner P., Pankrashkin K., “Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by an open arc”, Commun. Partial Diff. Eqns., 39:2 (2014), 193–212 | DOI | MR | Zbl

[37] Exner P., Tater M., “Spectra of soft ring graphs”, Waves Random Media, 14:1 (2004), S47–S60 | DOI | MR | Zbl

[38] Hagedorn G.A., Meller B., “Resonances in a box”, J. Math. Phys., 41:1 (2000), 103–117 | DOI | MR | Zbl

[39] Kondej S., Lotoreichik V., “Weakly coupled bound state of 2-D Schrödinger operator with potential-measure”, J. Math. Anal. Appl., 420:2 (2014), 1416–1438 | DOI | MR | Zbl

[40] Lotoreichik V., Ourmières-Bonafos T., “On the bound states of Schrödinger operators with $\delta $-interactions on conical surfaces”, Commun. Partial Diff. Eqns., 41:6 (2016), 999–1028 | DOI | MR | Zbl

[41] Lotoreichik V., Ourmières-Bonafos T., “A sharp upper bound on the spectral gap for graphene quantum dots”, Math. Phys. Anal. Geom., 22:2 (2019), 13 | DOI | MR | Zbl

[42] Mas A., Pizzichillo F., “Klein's paradox and the relativistic $\delta $-shell interaction in $\mathbb R^3$”, Anal. PDE, 11:3 (2018), 705–744 | DOI | MR | Zbl

[43] Ourmières-Bonafos T., Pankrashkin K., “Discrete spectrum of interactions concentrated near conical surfaces”, Appl. Anal., 97:9 (2018), 1628–1649 | DOI | MR | Zbl

[44] Posilicano A., “Boundary triples and Weyl functions for singular perturbations of self-adjoint operators”, Methods Funct. Anal. Topol., 10:2 (2004), 57–63 | MR | Zbl

[45] Schmidt K.M., “Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm–Liouville operators”, Commun. Math. Phys., 211:2 (2000), 645–685 | DOI | MR

[46] Šeba P., “Klein's paradox and the relativistic point interaction”, Lett. Math. Phys., 18:1 (1989), 77–86 | DOI | MR | Zbl