Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 106-122
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that all local holomorphic solutions of all equations constituting the hierarchies of the first and second Painlevé equations can be analytically continued to meromorphic functions on the whole complex plane. We also present a new conceptual proof of the fact that all local holomorphic solutions of the first, second, and fourth Painlevé equations are globally meromorphic.
Keywords:
meromorphic function, hierarchies of Painlevé equations, analytic continuation.
@article{TM_2020_311_a5,
author = {A. V. Domrin and B. I. Suleimanov and M. A. Shumkin},
title = {Global {Meromorphy} of {Solutions} of the {Painlev\'e} {Equations} and {Their} {Hierarchies}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {106--122},
publisher = {mathdoc},
volume = {311},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a5/}
}
TY - JOUR AU - A. V. Domrin AU - B. I. Suleimanov AU - M. A. Shumkin TI - Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 106 EP - 122 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a5/ LA - ru ID - TM_2020_311_a5 ER -
%0 Journal Article %A A. V. Domrin %A B. I. Suleimanov %A M. A. Shumkin %T Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 106-122 %V 311 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_311_a5/ %G ru %F TM_2020_311_a5
A. V. Domrin; B. I. Suleimanov; M. A. Shumkin. Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 106-122. http://geodesic.mathdoc.fr/item/TM_2020_311_a5/