Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 106-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that all local holomorphic solutions of all equations constituting the hierarchies of the first and second Painlevé equations can be analytically continued to meromorphic functions on the whole complex plane. We also present a new conceptual proof of the fact that all local holomorphic solutions of the first, second, and fourth Painlevé equations are globally meromorphic.
Keywords: meromorphic function, hierarchies of Painlevé equations, analytic continuation.
@article{TM_2020_311_a5,
     author = {A. V. Domrin and B. I. Suleimanov and M. A. Shumkin},
     title = {Global {Meromorphy} of {Solutions} of the {Painlev\'e} {Equations} and {Their} {Hierarchies}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {106--122},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a5/}
}
TY  - JOUR
AU  - A. V. Domrin
AU  - B. I. Suleimanov
AU  - M. A. Shumkin
TI  - Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 106
EP  - 122
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a5/
LA  - ru
ID  - TM_2020_311_a5
ER  - 
%0 Journal Article
%A A. V. Domrin
%A B. I. Suleimanov
%A M. A. Shumkin
%T Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 106-122
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a5/
%G ru
%F TM_2020_311_a5
A. V. Domrin; B. I. Suleimanov; M. A. Shumkin. Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 106-122. http://geodesic.mathdoc.fr/item/TM_2020_311_a5/

[1] Ablowitz M.J., Segur H., “Exact linearization of a Painlevé transcendent”, Phys. Rev. Lett., 38:20 (1977), 1103–1106 | DOI | MR

[2] Airault H., “Rational solutions of Painlevé equations”, Stud. Appl. Math., 61 (1979), 31–53 | DOI | MR | Zbl

[3] A. A. Bolibruch, A. R. Its, and A. A. Kapaev, “On the Riemann–Hilbert–Birkhoff inverse monodromy problem and the Painlevé equations”, St. Petersburg Math. J., 16 (2005), 105–142 | DOI | MR | Zbl

[4] Chiba H., “The first, second and fourth Painlevé equations on weighted projective spaces”, J. Diff. Eqns., 260:2 (2016), 1263–1313 | DOI | MR | Zbl

[5] Claeys T., Krasovsky I., Its A., “Higher-order analogues of the Tracy–Widom distribution and the Painlevé II hierarchy”, Commun. Pure Appl. Math., 63:3 (2010), 362–412 | MR | Zbl

[6] Cosgrove C.M., “Higher-order Painlevé equations in the polynomial class. I: Bureau Symbol $P2$”, Stud. Appl. Math., 104:1 (2000), 1–65 | DOI | MR | Zbl

[7] A. V. Domrin, “Remarks on the local version of the inverse scattering method”, Proc. Steklov Inst. Math., 253 (2006), 37–50 | DOI | MR | Zbl

[8] A. V. Domrin, “Meromorphic extension of solutions of soliton equations”, Izv. Math., 74:3 (2010), 461–480 | DOI | MR | Zbl

[9] V. V. Golubev, Lectures on the Analytic Theory of Differential Equations, Gostekhizdat, Moscow, 1950 (in Russian) | MR

[10] V. I. Gromak, “Painlevé property and deformation of linear differential systems. Part I”, Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz. Mat. Inform., 2011, no. 3, 107–117 | MR | Zbl

[11] Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Stud. Math., 28, W. de Gruyter, Berlin, 2002 | DOI | MR

[12] Hinkkanen A., Laine I., “Solutions of the first and second Painlevé equations are meromorphic”, J. anal. math., 79 (1999), 345–377 | DOI | MR | Zbl

[13] Hsieh P.-F., Sibuya Y., Basic theory of ordinary differential equations, Springer, New York, 1999 | MR | Zbl

[14] E. L. Ince, Ordinary Differential Equations, Longmans, Green Co., London, 1927 | Zbl

[15] A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Yu. Novokshenov, Painlevé Transcendents. The Riemann–Hilbert Approach, Am. Math. Soc., Providence, RI, 2006 | MR

[16] Joshi N., Kruskal M.D., “A direct proof that solutions of the six Painlevé equations have no movable singularities except poles”, Stud. Appl. Math., 93:3 (1994), 187–207 | DOI | MR | Zbl

[17] Kaneko K., Ohyama Y., “Meromorphic Painlevé transcendents at a fixed singularity”, Math. Nachr., 286:8–9 (2013), 861–875 | DOI | MR | Zbl

[18] A. V. Kitaev, “Turning points of linear systems and the double asymptotics of the Painlevé transcendents”, J. Math. Sci., 73:4 (1995), 446–459 | DOI | MR

[19] Kudryashov N.A., “The first and second Painlevé equations of higher order and some relations between them”, Phys. Lett. A, 224:6 (1997), 353–360 | DOI | MR

[20] Laine I., “Complex differential equations”, Handbook of differential equations: Ordinary differential equations, v. IV, ed. by F. Buttelli, M. Fečkan, North-Holland, Amsterdam, 2008, 269–363 | DOI | MR | Zbl

[21] Lax P.D., “Almost periodic solutions of the KdV equation”, SIAM Rev., 18 (1976), 351–375 | DOI | MR | Zbl

[22] Miwa T., “Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau $ functions”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 703–721 | DOI | MR | Zbl

[23] Praught J., Smirnov R.G., “Andrew Lenard: A mystery unraveled”, SIGMA. Symmetry Integrability Geom. Methods Appl., 1 (2005), 005 | MR | Zbl

[24] A. B. Shabat, Transformation operators and nonlinear equations, Doctoral (Phys.–Math.) Dissertation, Moscow State Univ., Moscow, 1975

[25] Shimomura S., “Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. IV, 29:1 (2000), 1–17 | MR | Zbl

[26] Shimomura S., “A certain expression of the first Painlevé hierarchy”, Proc. Japan Acad. Sci. Ser. A, 80:6 (2004), 105–109 | DOI | MR | Zbl

[27] Steinmetz N., Nevanlinna theory, normal families, and algebraic differential equations, Springer, Cham, 2017 | MR | Zbl

[28] B. I. Suleimanov, “On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations”, Differential Equations, Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz., 163, VINITI, Moscow, 2019, 81–95 | MR

[29] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987 | MR | MR | Zbl