Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 106-122

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that all local holomorphic solutions of all equations constituting the hierarchies of the first and second Painlevé equations can be analytically continued to meromorphic functions on the whole complex plane. We also present a new conceptual proof of the fact that all local holomorphic solutions of the first, second, and fourth Painlevé equations are globally meromorphic.
Keywords: meromorphic function, hierarchies of Painlevé equations, analytic continuation.
@article{TM_2020_311_a5,
     author = {A. V. Domrin and B. I. Suleimanov and M. A. Shumkin},
     title = {Global {Meromorphy} of {Solutions} of the {Painlev\'e} {Equations} and {Their} {Hierarchies}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {106--122},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a5/}
}
TY  - JOUR
AU  - A. V. Domrin
AU  - B. I. Suleimanov
AU  - M. A. Shumkin
TI  - Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 106
EP  - 122
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a5/
LA  - ru
ID  - TM_2020_311_a5
ER  - 
%0 Journal Article
%A A. V. Domrin
%A B. I. Suleimanov
%A M. A. Shumkin
%T Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 106-122
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a5/
%G ru
%F TM_2020_311_a5
A. V. Domrin; B. I. Suleimanov; M. A. Shumkin. Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 106-122. http://geodesic.mathdoc.fr/item/TM_2020_311_a5/