Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a5, author = {A. V. Domrin and B. I. Suleimanov and M. A. Shumkin}, title = {Global {Meromorphy} of {Solutions} of the {Painlev\'e} {Equations} and {Their} {Hierarchies}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {106--122}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a5/} }
TY - JOUR AU - A. V. Domrin AU - B. I. Suleimanov AU - M. A. Shumkin TI - Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 106 EP - 122 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a5/ LA - ru ID - TM_2020_311_a5 ER -
%0 Journal Article %A A. V. Domrin %A B. I. Suleimanov %A M. A. Shumkin %T Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 106-122 %V 311 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_311_a5/ %G ru %F TM_2020_311_a5
A. V. Domrin; B. I. Suleimanov; M. A. Shumkin. Global Meromorphy of Solutions of the Painlev\'e Equations and Their Hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 106-122. http://geodesic.mathdoc.fr/item/TM_2020_311_a5/
[1] Ablowitz M.J., Segur H., “Exact linearization of a Painlevé transcendent”, Phys. Rev. Lett., 38:20 (1977), 1103–1106 | DOI | MR
[2] Airault H., “Rational solutions of Painlevé equations”, Stud. Appl. Math., 61 (1979), 31–53 | DOI | MR | Zbl
[3] A. A. Bolibruch, A. R. Its, and A. A. Kapaev, “On the Riemann–Hilbert–Birkhoff inverse monodromy problem and the Painlevé equations”, St. Petersburg Math. J., 16 (2005), 105–142 | DOI | MR | Zbl
[4] Chiba H., “The first, second and fourth Painlevé equations on weighted projective spaces”, J. Diff. Eqns., 260:2 (2016), 1263–1313 | DOI | MR | Zbl
[5] Claeys T., Krasovsky I., Its A., “Higher-order analogues of the Tracy–Widom distribution and the Painlevé II hierarchy”, Commun. Pure Appl. Math., 63:3 (2010), 362–412 | MR | Zbl
[6] Cosgrove C.M., “Higher-order Painlevé equations in the polynomial class. I: Bureau Symbol $P2$”, Stud. Appl. Math., 104:1 (2000), 1–65 | DOI | MR | Zbl
[7] A. V. Domrin, “Remarks on the local version of the inverse scattering method”, Proc. Steklov Inst. Math., 253 (2006), 37–50 | DOI | MR | Zbl
[8] A. V. Domrin, “Meromorphic extension of solutions of soliton equations”, Izv. Math., 74:3 (2010), 461–480 | DOI | MR | Zbl
[9] V. V. Golubev, Lectures on the Analytic Theory of Differential Equations, Gostekhizdat, Moscow, 1950 (in Russian) | MR
[10] V. I. Gromak, “Painlevé property and deformation of linear differential systems. Part I”, Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz. Mat. Inform., 2011, no. 3, 107–117 | MR | Zbl
[11] Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Stud. Math., 28, W. de Gruyter, Berlin, 2002 | DOI | MR
[12] Hinkkanen A., Laine I., “Solutions of the first and second Painlevé equations are meromorphic”, J. anal. math., 79 (1999), 345–377 | DOI | MR | Zbl
[13] Hsieh P.-F., Sibuya Y., Basic theory of ordinary differential equations, Springer, New York, 1999 | MR | Zbl
[14] E. L. Ince, Ordinary Differential Equations, Longmans, Green Co., London, 1927 | Zbl
[15] A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Yu. Novokshenov, Painlevé Transcendents. The Riemann–Hilbert Approach, Am. Math. Soc., Providence, RI, 2006 | MR
[16] Joshi N., Kruskal M.D., “A direct proof that solutions of the six Painlevé equations have no movable singularities except poles”, Stud. Appl. Math., 93:3 (1994), 187–207 | DOI | MR | Zbl
[17] Kaneko K., Ohyama Y., “Meromorphic Painlevé transcendents at a fixed singularity”, Math. Nachr., 286:8–9 (2013), 861–875 | DOI | MR | Zbl
[18] A. V. Kitaev, “Turning points of linear systems and the double asymptotics of the Painlevé transcendents”, J. Math. Sci., 73:4 (1995), 446–459 | DOI | MR
[19] Kudryashov N.A., “The first and second Painlevé equations of higher order and some relations between them”, Phys. Lett. A, 224:6 (1997), 353–360 | DOI | MR
[20] Laine I., “Complex differential equations”, Handbook of differential equations: Ordinary differential equations, v. IV, ed. by F. Buttelli, M. Fečkan, North-Holland, Amsterdam, 2008, 269–363 | DOI | MR | Zbl
[21] Lax P.D., “Almost periodic solutions of the KdV equation”, SIAM Rev., 18 (1976), 351–375 | DOI | MR | Zbl
[22] Miwa T., “Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau $ functions”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 703–721 | DOI | MR | Zbl
[23] Praught J., Smirnov R.G., “Andrew Lenard: A mystery unraveled”, SIGMA. Symmetry Integrability Geom. Methods Appl., 1 (2005), 005 | MR | Zbl
[24] A. B. Shabat, Transformation operators and nonlinear equations, Doctoral (Phys.–Math.) Dissertation, Moscow State Univ., Moscow, 1975
[25] Shimomura S., “Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. IV, 29:1 (2000), 1–17 | MR | Zbl
[26] Shimomura S., “A certain expression of the first Painlevé hierarchy”, Proc. Japan Acad. Sci. Ser. A, 80:6 (2004), 105–109 | DOI | MR | Zbl
[27] Steinmetz N., Nevanlinna theory, normal families, and algebraic differential equations, Springer, Cham, 2017 | MR | Zbl
[28] B. I. Suleimanov, “On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations”, Differential Equations, Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz., 163, VINITI, Moscow, 2019, 81–95 | MR
[29] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987 | MR | MR | Zbl