Capacities on a Compact Riemann Surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 41-83

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the capacity of condensers and capacities of compact sets on a compact Riemann surface are investigated. These properties generalize those of the corresponding objects in the complex plane. Discrete analogs of capacities are defined, and their convergence to the corresponding capacities of compact sets and condensers is proved.
@article{TM_2020_311_a3,
     author = {E. M. Chirka},
     title = {Capacities on a {Compact} {Riemann} {Surface}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--83},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a3/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Capacities on a Compact Riemann Surface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 41
EP  - 83
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a3/
LA  - ru
ID  - TM_2020_311_a3
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Capacities on a Compact Riemann Surface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 41-83
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a3/
%G ru
%F TM_2020_311_a3
E. M. Chirka. Capacities on a Compact Riemann Surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 41-83. http://geodesic.mathdoc.fr/item/TM_2020_311_a3/