Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a3, author = {E. M. Chirka}, title = {Capacities on a {Compact} {Riemann} {Surface}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {41--83}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a3/} }
E. M. Chirka. Capacities on a Compact Riemann Surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 41-83. http://geodesic.mathdoc.fr/item/TM_2020_311_a3/
[1] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, NJ, 1966 | MR | Zbl
[2] Ahlfors L.V., “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–11 | DOI | MR | Zbl
[3] Ahlfors L.V., “Open Riemann surfaces and extremal problems on compact subregions”, Comment. math. Helv., 24 (1950), 100–134 | DOI | MR | Zbl
[4] Bagby T., “The modulus of a plane condenser”, J. Math. Mech., 17:4 (1967), 315–329 | MR | Zbl
[5] M. Brelot, Éléments de la théorie classique du potentiel, Centre Doc. Univ., Paris, 1961 | MR | MR
[6] L. Carleson, Selected Problems on Exceptional Sets, D. Van Nostrand, Princeton, NJ, 1967 | MR | Zbl
[7] E. M. Chirka, Complex Analytic Sets, Nauka, Moscow, 1985 | MR | Zbl
[8] Kluwer, Dordrecht, 1989 | MR | Zbl
[9] E. M. Chirka, Riemann Surfaces, Lekts. Kursy Nauchno-Obrazov. Tsentra, 1, Steklov Math. Inst., Moscow, 2006 | DOI | Zbl
[10] E. M. Chirka, “Harnack inequalities, Kobayashi distances and holomorphic motions”, Proc. Steklov Inst. Math., 279 (2012), 194–206 | DOI | DOI | MR | Zbl
[11] E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303 | DOI | DOI | MR | Zbl
[12] E. M. Chirka, “Equilibrium measures on a compact Riemann surface”, Proc. Steklov Inst. Math., 306 (2019), 296–334 | DOI | DOI | MR | Zbl
[13] E. M. Chirka, “Meromorphic interpolation on a compact Riemann surface”, Math. Notes, 106:1 (2019), 156–159 | DOI | MR | Zbl
[14] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Birkhäuser/Springer, Basel, 2014 | MR | Zbl
[15] V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces”, Sb. Math., 206:1 (2015), 61–86 | DOI | MR | MR | Zbl
[16] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR | Zbl
[17] Garabedian P.R., “Schwarz's lemma and the Szegő kernel function”, Trans. Amer. Math. Soc., 67 (1949), 1–35 | MR | Zbl
[18] Garnett J., Analytic capacity and measure, Lect. Notes Math., 297, Springer, Berlin, 1972 | DOI | MR | Zbl
[19] N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972 | MR | MR | Zbl
[20] Nehari Z., Conformal mapping, McGrow-Hill, New York, 1952 | MR | Zbl
[21] Ransford T., Potential theory in the complex plane, LMS Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[22] Royden H.L., “Function theory on compact Riemann surfaces”, J. anal. math., 18 (1967), 295–327 | DOI | MR | Zbl
[23] Shiffman B., “On the removal of singularities of analytic sets”, Mich. Math. J., 15 (1968), 111–120 | DOI | MR | Zbl
[24] Skinner B., Logarithmic potential theory on Riemann surfaces, PhD Thesis, Calif. Inst. Technol., Pasadena, 2015 | MR
[25] Tsuji M., Potential theory in modern function theory, Maruzen Co., Tokyo, 1959 | MR | Zbl
[26] A. G. Vitushkin, “A set of positive length having a zero analytic capacity”, Dokl. Akad. Nauk, 127:2 (1959), 246–249 | MR | Zbl
[27] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russ. Math. Surv., 22:6 (1967), 139–200 | DOI | MR | Zbl
[28] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, M.I.T. Press, Cambridge, MA, 1966 | MR
[29] Zalcman L., Analytic capacity and rational approximation, Lect. Notes Math., 50, Springer, Berlin, 1968 | DOI | MR | Zbl