Capacities on a Compact Riemann Surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 41-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the capacity of condensers and capacities of compact sets on a compact Riemann surface are investigated. These properties generalize those of the corresponding objects in the complex plane. Discrete analogs of capacities are defined, and their convergence to the corresponding capacities of compact sets and condensers is proved.
@article{TM_2020_311_a3,
     author = {E. M. Chirka},
     title = {Capacities on a {Compact} {Riemann} {Surface}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--83},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a3/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Capacities on a Compact Riemann Surface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 41
EP  - 83
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a3/
LA  - ru
ID  - TM_2020_311_a3
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Capacities on a Compact Riemann Surface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 41-83
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a3/
%G ru
%F TM_2020_311_a3
E. M. Chirka. Capacities on a Compact Riemann Surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 41-83. http://geodesic.mathdoc.fr/item/TM_2020_311_a3/

[1] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, NJ, 1966 | MR | Zbl

[2] Ahlfors L.V., “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–11 | DOI | MR | Zbl

[3] Ahlfors L.V., “Open Riemann surfaces and extremal problems on compact subregions”, Comment. math. Helv., 24 (1950), 100–134 | DOI | MR | Zbl

[4] Bagby T., “The modulus of a plane condenser”, J. Math. Mech., 17:4 (1967), 315–329 | MR | Zbl

[5] M. Brelot, Éléments de la théorie classique du potentiel, Centre Doc. Univ., Paris, 1961 | MR | MR

[6] L. Carleson, Selected Problems on Exceptional Sets, D. Van Nostrand, Princeton, NJ, 1967 | MR | Zbl

[7] E. M. Chirka, Complex Analytic Sets, Nauka, Moscow, 1985 | MR | Zbl

[8] Kluwer, Dordrecht, 1989 | MR | Zbl

[9] E. M. Chirka, Riemann Surfaces, Lekts. Kursy Nauchno-Obrazov. Tsentra, 1, Steklov Math. Inst., Moscow, 2006 | DOI | Zbl

[10] E. M. Chirka, “Harnack inequalities, Kobayashi distances and holomorphic motions”, Proc. Steklov Inst. Math., 279 (2012), 194–206 | DOI | DOI | MR | Zbl

[11] E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303 | DOI | DOI | MR | Zbl

[12] E. M. Chirka, “Equilibrium measures on a compact Riemann surface”, Proc. Steklov Inst. Math., 306 (2019), 296–334 | DOI | DOI | MR | Zbl

[13] E. M. Chirka, “Meromorphic interpolation on a compact Riemann surface”, Math. Notes, 106:1 (2019), 156–159 | DOI | MR | Zbl

[14] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Birkhäuser/Springer, Basel, 2014 | MR | Zbl

[15] V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces”, Sb. Math., 206:1 (2015), 61–86 | DOI | MR | MR | Zbl

[16] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR | Zbl

[17] Garabedian P.R., “Schwarz's lemma and the Szegő kernel function”, Trans. Amer. Math. Soc., 67 (1949), 1–35 | MR | Zbl

[18] Garnett J., Analytic capacity and measure, Lect. Notes Math., 297, Springer, Berlin, 1972 | DOI | MR | Zbl

[19] N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972 | MR | MR | Zbl

[20] Nehari Z., Conformal mapping, McGrow-Hill, New York, 1952 | MR | Zbl

[21] Ransford T., Potential theory in the complex plane, LMS Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[22] Royden H.L., “Function theory on compact Riemann surfaces”, J. anal. math., 18 (1967), 295–327 | DOI | MR | Zbl

[23] Shiffman B., “On the removal of singularities of analytic sets”, Mich. Math. J., 15 (1968), 111–120 | DOI | MR | Zbl

[24] Skinner B., Logarithmic potential theory on Riemann surfaces, PhD Thesis, Calif. Inst. Technol., Pasadena, 2015 | MR

[25] Tsuji M., Potential theory in modern function theory, Maruzen Co., Tokyo, 1959 | MR | Zbl

[26] A. G. Vitushkin, “A set of positive length having a zero analytic capacity”, Dokl. Akad. Nauk, 127:2 (1959), 246–249 | MR | Zbl

[27] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russ. Math. Surv., 22:6 (1967), 139–200 | DOI | MR | Zbl

[28] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, M.I.T. Press, Cambridge, MA, 1966 | MR

[29] Zalcman L., Analytic capacity and rational approximation, Lect. Notes Math., 50, Springer, Berlin, 1968 | DOI | MR | Zbl