Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a2, author = {P. I. Borisova and O. K. Sheinman}, title = {Hitchin {Systems} on {Hyperelliptic} {Curves}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {27--40}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a2/} }
P. I. Borisova; O. K. Sheinman. Hitchin Systems on Hyperelliptic Curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 27-40. http://geodesic.mathdoc.fr/item/TM_2020_311_a2/
[1] Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts Math., 60, Springer, New York, 1989
[2] Babelon O., Talon M., “Riemann surfaces, separation of variables and classical and quantum integrability”, Phys. Lett. A, 312:1–2 (2003), 71–77 ; arXiv: hep-th/0209071. | DOI | MR | Zbl
[3] P. I. Borisova, “Separation of variables for the type $D_l$ Hitchin systems on a hyperelliptic curve”, Usp. Mat. Nauk | MR
[4] Donagi R., Witten E., “Supersymmetric Yang–Mills theory and integrable systems”, Nucl. Phys. B, 460:2 (1996), 299–334 ; arXiv: hep-th/9510101. | DOI | MR | Zbl
[5] Dubrovin B.A., Krichever I.M., Novikov S.P., “Integrable systems. I”, Dynamical systems IV: Symplectic geometry and its applications, Encycl. Math. Sci., 4, ed. by V.I. Arnold, S.P. Novikov, Springer, Berlin, 1990, 173–280 | MR
[6] Fay J.D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl
[7] Gawȩdzki K., Tran-Ngoc-Bich P., “Hitchin systems at low genera”, J. Math. Phys., 41:7 (2000), 4695–4712 ; arXiv: hep-th/9803101. | DOI | MR | Zbl
[8] Van Geemen B., Previato E., “On the Hitchin system”, Duke Math. J., 85:3 (1996), 659–683 ; arXiv: alg-geom/9410015. | DOI | MR | Zbl
[9] Gorsky A., Nekrasov N., Rubtsov V., “Hilbert schemes, separated variables, and $D$-branes”, Commun. Math. Phys., 222:2 (2001), 299–318 | DOI | MR | Zbl
[10] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl
[11] Hurtubise J.C., “Integrable systems and algebraic surfaces”, Duke. Math. J., 83:1 (1996), 19–50 | DOI | MR | Zbl
[12] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl
[13] I. M. Krichever and O. K. Sheinman, “Lax operator algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294 | DOI | MR | Zbl
[14] Sheinman O.K., Current algebras on Riemann surfaces: New results and applications, De Gruyter Expo. Math., 58, W. de Gruyter, Berlin, 2012 | MR | Zbl
[15] O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theor. Math. Phys., 185:3 (2015), 1816–1831 | DOI | MR | Zbl
[16] O. K. Sheinman, “Lax operator algebras and integrable systems”, Russ. Math. Surv., 71:1 (2016), 109–156 | DOI | MR | Zbl
[17] Sheinman O.K., Some reductions of rank 2 and genera 2 and 3 Hitchin systems, E-print, 2017, arXiv: 1709.06803 [math-ph] | MR
[18] O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146 | DOI | MR | Zbl
[19] O. K. Sheinman, “Integrable systems of algebraic origin and separation of variables”, Funct. Anal. Appl., 52:4 (2018), 316–320 | DOI | MR | Zbl
[20] O. K. Sheinman, “Spectral curves of the hyperelliptic Hitchin systems”, Funct. Anal. Appl., 53:4 (2019), 291–303 | DOI | MR | Zbl
[21] V. V. Shokurov, “Prym varieties: Theory and applications”, Math. USSR, Izv., 23:1 (1984), 83–147 | DOI | MR
[22] Sklyanin E.K., “Separation of variables: New trends”, Prog. Theor. Phys. Suppl., 118 (1995), 35–60 ; arXiv: solv-int/9504001. | DOI | MR | Zbl
[23] Talalaev D., Riemann bilinear form and Poisson structure in Hitchin-type systems, E-print, 2003, arXiv: hep-th/0304099.