Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a14, author = {Siye Wu}, title = {Quantisation of a {Family} of {Phase} {Spaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {250--263}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a14/} }
Siye Wu. Quantisation of a Family of Phase Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 250-263. http://geodesic.mathdoc.fr/item/TM_2020_311_a14/
[1] Axelrod S., Della Pietra S., Witten E., “Geometric quantization of Chern–Simons gauge theory”, J. Diff. Geom., 33:3 (1991), 787–902 | DOI | MR | Zbl
[2] Berry M.V., “Quantal phase factors accompanying adiabatic changes”, Proc. R. Soc. London A, 392 (1984), 45–57 | DOI | MR | Zbl
[3] Berry M.V., “Classical adiabatic angles and quantal adiabatic phase”, J. Phys. A: Math. Gen., 18 (1985), 15–27 | DOI | MR | Zbl
[4] Blattner R.J., “On geometric quantization”, Non-linear partial differential operators and quantization procedures, Proc. Workshop (Clausthal, 1981), Lect. Notes Math., 1037, ed. by S.I. Andersson et al., Springer, Berlin, 1983, 209–241 | DOI | MR
[5] J. Davidov and A. G. Sergeev, “Twistor spaces and harmonic maps”, Russ. Math. Surv., 48:3 (1993), 1–91 | DOI | MR | Zbl
[6] Freed D.S., Moore G.W., Segal G., “The uncertainty of fluxes”, Commun. Math. Phys., 271:1 (2007), 247–274 ; arXiv: hep-th/0605198. | DOI | MR | Zbl
[7] Ginzburg V.L., Montgomery R., “Geometric quantization and no-go theorems”, Poisson geometry: Stanisław Zakrzewski in memoriam, Banach Cent. Publ., 51, ed. by J. Grabowski et al., Pol. Acad. Sci., Inst. Math., Warsaw, 2000, 69–77 ; arXiv: dg-ga/9703010. | MR | Zbl
[8] Ivanov S., Minchev I., Zamkovoy S., “Twistor and reflector spaces of almost para-quaternionic manifolds”, Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., 16, ed. by V. Cortés, Eur. Math. Soc., Zürich, 2010, 477–496 ; arXiv: math/0511657 [math.DG] | MR | Zbl
[9] A. A. Kirillov, “Geometric quantization”, Dynamical Systems IV: Symplectic Geometry and Its Applications, Encycl. Math. Sci., 4, Springer, Berlin, 1990, 137–172 | MR
[10] Kirwin W.D., Wu S., “Geometric quantization, parallel transport and the Fourier transform”, Commun. Math. Phys., 266:3 (2006), 577–594 ; arXiv: math/0409555 [math.SG] | DOI | MR | Zbl
[11] Kostant B., “Quantization and unitary representations. I: Prequantization”, Lectures in modern analysis and applications. III, Lect. Notes Math., 170, ed. by C.T. Taam, Springer, Berlin, 1970, 87–208 | DOI | MR
[12] Libermann P., “Sur les structures presque quaternioniennes de deuxième espèce”, C. r. Acad. sci. Paris, 234 (1952), 1030–1032 | MR | Zbl
[13] Simon B., “Holonomy, the quantum adiabatic theorem, and Berry's phase”, Phys. Rev. Lett., 51:24 (1983), 2167–2170 | DOI | MR
[14] Śniatycki J., Geometric quantization and quantum mechanics, Appl. Math. Sci., 30, Springer, New York, 1980 | DOI | MR | Zbl
[15] Souriau J.-M., Structure des systèmes dynamiques, Maîtrises math., Dunod, Paris, 1970 | MR | Zbl
[16] Wilczek F., Zee A., “Appearance of gauge structure in simple dynamical systems”, Phys. Rev. Lett., 52:24 (1984), 2111–2114 | DOI | MR
[17] Witten E., “Quantization of Chern–Simons gauge theory with complex gauge group”, Commun. Math. Phys., 137:1 (1991), 29–66 | DOI | MR | Zbl
[18] Wu S., “Quantum adiabatic theorem and universal holonomy”, Lett. Math. Phys., 16:4 (1988), 339–345 | DOI | MR | Zbl
[19] Wu S., “Geometric phases in the quantisation of bosons and fermions”, J. Aust. Math. Soc., 90:2 (2011), 221–235 | DOI | MR | Zbl
[20] Wu S., “Projective flatness in the quantisation of bosons and fermions”, J. Math. Phys., 56:7 (2015), 072102 ; arXiv: 1008.5333 [math.SG] | DOI | MR | Zbl
[21] Wu S., “Symmetry, phases and quantisation”, Geometry, integrability and quantization, Proc. 18th Int. Conf. (Varna, 2016), ed. by I.M. Mladenov et al., Avangard Prima, Sofia, 2017, 77–96 | Zbl