Quantisation of a Family of Phase Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 250-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explain that when quantising phase spaces with varying symplectic structures, the bundle of quantum Hilbert spaces over the parameter space has a natural unitary connection. We then focus on symplectic vector spaces and their fermionic counterparts. After reviewing how the quantum Hilbert space depends on physical parameters such as the Hamiltonian and unphysical parameters such as choices of polarisations, we study the connection, curvature and phases of the Hilbert space bundle when the phase space structure itself varies. We apply the results to the $2$-sphere family of symplectic structures on a hyper-Kähler vector space and to their fermionic analogue, and conclude with possible generalisations.
@article{TM_2020_311_a14,
     author = {Siye Wu},
     title = {Quantisation of a {Family} of {Phase} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {250--263},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a14/}
}
TY  - JOUR
AU  - Siye Wu
TI  - Quantisation of a Family of Phase Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 250
EP  - 263
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a14/
LA  - ru
ID  - TM_2020_311_a14
ER  - 
%0 Journal Article
%A Siye Wu
%T Quantisation of a Family of Phase Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 250-263
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a14/
%G ru
%F TM_2020_311_a14
Siye Wu. Quantisation of a Family of Phase Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 250-263. http://geodesic.mathdoc.fr/item/TM_2020_311_a14/

[1] Axelrod S., Della Pietra S., Witten E., “Geometric quantization of Chern–Simons gauge theory”, J. Diff. Geom., 33:3 (1991), 787–902 | DOI | MR | Zbl

[2] Berry M.V., “Quantal phase factors accompanying adiabatic changes”, Proc. R. Soc. London A, 392 (1984), 45–57 | DOI | MR | Zbl

[3] Berry M.V., “Classical adiabatic angles and quantal adiabatic phase”, J. Phys. A: Math. Gen., 18 (1985), 15–27 | DOI | MR | Zbl

[4] Blattner R.J., “On geometric quantization”, Non-linear partial differential operators and quantization procedures, Proc. Workshop (Clausthal, 1981), Lect. Notes Math., 1037, ed. by S.I. Andersson et al., Springer, Berlin, 1983, 209–241 | DOI | MR

[5] J. Davidov and A. G. Sergeev, “Twistor spaces and harmonic maps”, Russ. Math. Surv., 48:3 (1993), 1–91 | DOI | MR | Zbl

[6] Freed D.S., Moore G.W., Segal G., “The uncertainty of fluxes”, Commun. Math. Phys., 271:1 (2007), 247–274 ; arXiv: hep-th/0605198. | DOI | MR | Zbl

[7] Ginzburg V.L., Montgomery R., “Geometric quantization and no-go theorems”, Poisson geometry: Stanisław Zakrzewski in memoriam, Banach Cent. Publ., 51, ed. by J. Grabowski et al., Pol. Acad. Sci., Inst. Math., Warsaw, 2000, 69–77 ; arXiv: dg-ga/9703010. | MR | Zbl

[8] Ivanov S., Minchev I., Zamkovoy S., “Twistor and reflector spaces of almost para-quaternionic manifolds”, Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., 16, ed. by V. Cortés, Eur. Math. Soc., Zürich, 2010, 477–496 ; arXiv: math/0511657 [math.DG] | MR | Zbl

[9] A. A. Kirillov, “Geometric quantization”, Dynamical Systems IV: Symplectic Geometry and Its Applications, Encycl. Math. Sci., 4, Springer, Berlin, 1990, 137–172 | MR

[10] Kirwin W.D., Wu S., “Geometric quantization, parallel transport and the Fourier transform”, Commun. Math. Phys., 266:3 (2006), 577–594 ; arXiv: math/0409555 [math.SG] | DOI | MR | Zbl

[11] Kostant B., “Quantization and unitary representations. I: Prequantization”, Lectures in modern analysis and applications. III, Lect. Notes Math., 170, ed. by C.T. Taam, Springer, Berlin, 1970, 87–208 | DOI | MR

[12] Libermann P., “Sur les structures presque quaternioniennes de deuxième espèce”, C. r. Acad. sci. Paris, 234 (1952), 1030–1032 | MR | Zbl

[13] Simon B., “Holonomy, the quantum adiabatic theorem, and Berry's phase”, Phys. Rev. Lett., 51:24 (1983), 2167–2170 | DOI | MR

[14] Śniatycki J., Geometric quantization and quantum mechanics, Appl. Math. Sci., 30, Springer, New York, 1980 | DOI | MR | Zbl

[15] Souriau J.-M., Structure des systèmes dynamiques, Maîtrises math., Dunod, Paris, 1970 | MR | Zbl

[16] Wilczek F., Zee A., “Appearance of gauge structure in simple dynamical systems”, Phys. Rev. Lett., 52:24 (1984), 2111–2114 | DOI | MR

[17] Witten E., “Quantization of Chern–Simons gauge theory with complex gauge group”, Commun. Math. Phys., 137:1 (1991), 29–66 | DOI | MR | Zbl

[18] Wu S., “Quantum adiabatic theorem and universal holonomy”, Lett. Math. Phys., 16:4 (1988), 339–345 | DOI | MR | Zbl

[19] Wu S., “Geometric phases in the quantisation of bosons and fermions”, J. Aust. Math. Soc., 90:2 (2011), 221–235 | DOI | MR | Zbl

[20] Wu S., “Projective flatness in the quantisation of bosons and fermions”, J. Math. Phys., 56:7 (2015), 072102 ; arXiv: 1008.5333 [math.SG] | DOI | MR | Zbl

[21] Wu S., “Symmetry, phases and quantisation”, Geometry, integrability and quantization, Proc. 18th Int. Conf. (Varna, 2016), ed. by I.M. Mladenov et al., Avangard Prima, Sofia, 2017, 77–96 | Zbl