Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a11, author = {V. G. Lysov}, title = {Mixed {Type} {Hermite--Pad\'e} {Approximants} for a {Nikishin} {System}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {213--227}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a11/} }
V. G. Lysov. Mixed Type Hermite--Pad\'e Approximants for a Nikishin System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 213-227. http://geodesic.mathdoc.fr/item/TM_2020_311_a11/
[1] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | MR | MR | Zbl
[2] Aptekarev A.I., Denisov S.A., Yattselev M.L., “Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials”, Trans. Amer. Math. Soc., 373 (2020), 875–917 | DOI | MR | Zbl
[3] A. I. Aptekarev, S. A. Denisov, and M. L. Yattselev, “Discrete Schrödinger operator on a tree, Angelesco potentials, and their perturbations”, Proc. Steklov Inst. Math., 311 (2020), 1–9
[4] Aptekarev A.I., Kozhan R., “Differential equations for the recurrence coefficients limits for multiple orthogonal polynomials from a Nevai class”, J. Approx. Theory, 255 (2020), 105409 ; arXiv: 1908.04540 [math.CA] | DOI | MR | Zbl
[5] A. I. Aptekarev and A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russ. Math. Surv., 66:6 (2011), 1133–1199 | DOI | MR | Zbl
[6] A. I. Aptekarev, G. López Lagomasino, and I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | MR | Zbl
[7] A. I. Aptekarev and V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | MR | Zbl
[8] Beals R., Sattinger D.H., Szmigielski J., “Multipeakons and the classical moment problem”, Adv. Math., 154:2 (2000), 229–257 | DOI | MR | Zbl
[9] Bertola M., Gekhtman M., Szmigielski J., “Cauchy biorthogonal polynomials”, J. Approx. Theory, 162:4 (2010), 832–867 | DOI | MR | Zbl
[10] A. I. Bogolyubskii and V. G. Lysov, “Constructive solution of one vector equilibrium problem”, Dokl. Math., 101:2 (2020), 90–92 | DOI
[11] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. Math. Ser. 2, 137:2 (1993), 295–368 | DOI | MR | Zbl
[12] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and perturbation theory, Proc. 2nd Int. Workshop (Rome, 1998), World Scientific, Singapore, 1999, 23–37 | MR | Zbl
[13] Fidalgo Prieto U., López García A., López Lagomasino G., Sorokin V.N., “Mixed type multiple orthogonal polynomials for two Nikishin systems”, Constr. Approx., 32:2 (2010), 255–306 | DOI | MR | Zbl
[14] Fidalgo Prieto U., López Lagomasino G., “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 | DOI | MR | Zbl
[15] Fidalgo Prieto U., López Lagomasino G., “Nikishin systems are perfect. The case of unbounded and touching supports”, J. Approx. Theory, 163:6 (2011), 779–811 | DOI | MR | Zbl
[16] Fidalgo U., López Lagomasino G., Medina Peralta S., “Asymptotic of Cauchy biorthogonal polynomials”, Mediterr. J. Math., 17:1 (2020), 22 ; arXiv: 1904.00126 [math.CA] | DOI | MR | Zbl
[17] A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl
[18] A. A. Gonchar and E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR, Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[19] A. A. Gonchar and E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russ. Math. Surv., 40:4 (1985), 183–184 | DOI | MR | Zbl
[20] A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl
[21] González Ricardo L.G., López Lagomasino G., Medina Peralta S., Logarithmic asymptotic of multi-level Hermite–Padé polynomials, E-print, 2020, arXiv: 2002.06194 [math.CA]
[22] A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | DOI | MR | Zbl
[23] Kuijlaars A.B.J., “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 155–176 | DOI | MR | Zbl
[24] López Lagomasino G., Medina Peralta S., “On the convergence of type I Hermite–Padé approximants”, Adv. Math., 273 (2015), 124–148 | DOI | MR | Zbl
[25] López Lagomasino G., Medina Peralta S., Szmigielski J., “Mixed type Hermite–Padé approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | DOI | MR | Zbl
[26] G. López Lagomasino and W. Van Assche, “Riemann–Hilbert analysis for a Nikishin system”, Sb. Math., 209:7 (2018), 1019–1050 | DOI | MR | Zbl
[27] Lundmark H., Szmigielski J., “Degasperis–Procesi peakons and the discrete cubic string”, IMRP. Int. Math. Res. Pap., 2005:2 (2005), 53–116 | DOI | MR | Zbl
[28] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl
[29] Mahler K., “Perfect systems”, Compos. math., 19 (1968), 95–166 | MR | Zbl
[30] Markoff A., “Deux démonstrations de la convergence de certaines fractions continues”, Acta math., 19 (1895), 93–104 | DOI | MR
[31] E. M. Nikishin, “On simultaneous Padé approximants”, Math. USSR, Sb., 41:4 (1982), 409–425 | DOI | MR | MR | Zbl | Zbl
[32] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moscow, 1988 | MR | Zbl | Zbl
[33] Am. Math. Soc., Providence, RI, 1991 | MR | Zbl | Zbl
[34] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[35] Stahl H., Totik V., General orthogonal polynomials, Encycl. Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[36] S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261 | DOI | MR | Zbl
[37] S. P. Suetin, “Equivalence of a scalar and a vector equilibrium problem for a pair of functions forming a Nikishin system”, Math. Notes, 106:6 (2019), 971–980 | MR | Zbl
[38] Van Assche W., Geronimo J.S., Kuijlaars A.B.J., “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: Current perspective and future directions, Proc. NATO Adv. Stud. Inst. (Tempe, 2000), NATO Sci. Ser. II: Math. Phys. Chem., 30, Kluwer, Dordrecht, 2001, 23–59 | MR | Zbl
[39] Yattselev M.L., “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Can. J. Math., 68:5 (2016), 1159–1200 | DOI | MR