Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a10, author = {A. V. Loboda}, title = {On the {Problem} of {Describing} {Holomorphically} {Homogeneous} {Real} {Hypersurfaces} of {Four-Dimensional} {Complex} {Spaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {194--212}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a10/} }
TY - JOUR AU - A. V. Loboda TI - On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 194 EP - 212 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a10/ LA - ru ID - TM_2020_311_a10 ER -
%0 Journal Article %A A. V. Loboda %T On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 194-212 %V 311 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_311_a10/ %G ru %F TM_2020_311_a10
A. V. Loboda. On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 194-212. http://geodesic.mathdoc.fr/item/TM_2020_311_a10/
[1] R. S. Akopyan and A. V. Loboda, “On holomorphic realizations of nilpotent Lie algebras”, Funct. Anal. Appl., 53:2 (2019), 124–128 | DOI | MR | Zbl
[2] A. V. Atanov, I. G. Kossovskiy, and A. V. Loboda, “On orbits of action of 5-dimensional non-solvable Lie algebras in three-dimensional complex space”, Dokl. Math., 100:1 (2019), 377–379 | DOI | MR | Zbl
[3] A. V. Atanov and A. V. Loboda, “Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb C^3$”, Modern Methods of Function Theory and Related Problems, Part 4 (Mater. Voronezh Winter Math. Sch., Jan. 28–Feb. 2, 2019), Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz., 173, VINITI, Moscow, 2019, 86–115
[4] Beloshapka V.K., Kossovskiy I.G., “Homogeneous hypersurfaces in $\mathbb C^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[5] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl. Ser. 4, 11 (1932), 17–90 | DOI | MR
[6] Chern S.S., Moser J.K., “Real hypersurfaces in complex manifolds”, Acta math., 133 (1974), 219–271 | DOI | MR
[7] Doubrov B., Medvedev A., The D., Homogeneous Levi non-degenerate hypersurfaces in $\mathbb C^3$, E-print, 2017, arXiv: 1711.02389v1 [math.DG] | Zbl
[8] Ezhov V.V., Isaev A.V., “On the dimension of the stability group for a Levi non-degenerate hypersurface”, Ill. J. Math., 49:4 (2005), 1155–1169 ; “Erratum”, Ill. J. Math., 51:3 (2007), 1035–1036 | DOI | MR | Zbl | DOI | MR | Zbl
[9] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta math., 201:1 (2008), 1–82 | DOI | MR | Zbl
[10] Gong M.-P., Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbf R$), PhD thesis, Univ. Waterloo, Waterloo, 1998 | MR
[11] A. V. Isaev and M. A. Mishchenko, “Classification of spherical tube hypersurfaces having one minus in the signature of the Levi form”, Math. USSR, Izv., 33:3 (1989), 441–472 | DOI | MR | Zbl
[12] D. I. Khatskevich, G. V. Zin'kevich, and A. V. Loboda, “Degenerations of the orbits of decomposable 7-dimensional Lie algebras”, Collection of Student Research Papers of the Faculty of Computer Science, Voronezh State Univ., Part 2, Voronezh. Gos. Univ., Voronezh, 2020, 290–295 (in Russian)
[13] Kruglikov B., “Submaximally symmetric CR-structures”, J. Geom. Anal., 26:4 (2016), 3090–3097 | DOI | MR | Zbl
[14] N. G. Kruzhilin and A. V. Loboda, “Linearization of local automorphisms of pseudoconvex surfaces”, Sov. Math., Dokl., 28 (1983), 70–72 | MR | Zbl
[15] A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Sb. Math., 192:12 (2001), 1741–1761 | DOI | MR | Zbl
[16] A. V. Loboda, “Homogeneous real hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Proc. Steklov Inst. Math., 235 (2001), 107–135 | MR | Zbl
[17] A. V. Loboda, R. S. Akopyan, and V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zh. Sib. Fed. Univ., Mat. Fiz., 13:3 (2020), 360–372 | DOI | MR
[18] V. V. Morozov, “Classification of nilpotent Lie algebras of dimension six”, Izv. Vyssh. Uchebn. Zaved., Mat., 1958, no. 4, 161–171 | MR | Zbl
[19] G. M. Mubarakzyanov, “Classification of real structures of Lie algebras of fifth order”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963, no. 3, 99–106 | MR | Zbl
[20] A. A. Pan'kova, D. D. Vychikov, and A. V. Loboda, “Integration of one decomposable 7-dimensional Lie algebra”, Collection of Student Research Papers of the Faculty of Computer Science, Voronezh State Univ., Part 2, Voronezh. Gos. Univ., Voronezh, 2020, 229–235 (in Russian)