On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 194-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss two fragments of a large problem that extends the author's recently completed similar studies in the space $\mathbb C^3$ to the next dimension. One of the fragments is related to the local description of nonspherical holomorphically homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^4$ with stabilizers of submaximal dimension. Using the Moser normal form technique and the properties of subgroups of the unitary group $\mathrm U(3)$, we show that up to holomorphic equivalence there exist only two such surfaces. Both of them are natural generalizations of known homogeneous hypersurfaces in the space $\mathbb C^3$. In the second part of the paper, we consider a technique of holomorphic realization in $\mathbb C^4$ of abstract seven-dimensional Lie algebras that correspond, in particular, to homogeneous hypersurfaces with trivial stabilizer. Some sufficient conditions for the Lie algebras are obtained under which the orbits of all realizations of such algebras are Levi degenerate. The schemes of studying holomorphically homogeneous hypersurfaces that were used in the two-dimensional (É. Cartan) and three-dimensional (Doubrov, Medvedev, and The; Fels and Kaup; Beloshapka and Kossovskiy; Loboda) situations and resulted in full descriptions of such hyperdurfaces turn out to be quite efficient in the case of greater dimension of the ambient space as well.
Keywords: homogeneous manifold, real hypersurface, normal form, holomorphic transformation, vector field, Lie algebra, unitary group.
@article{TM_2020_311_a10,
     author = {A. V. Loboda},
     title = {On the {Problem} of {Describing} {Holomorphically} {Homogeneous} {Real} {Hypersurfaces} of {Four-Dimensional} {Complex} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {194--212},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a10/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 194
EP  - 212
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a10/
LA  - ru
ID  - TM_2020_311_a10
ER  - 
%0 Journal Article
%A A. V. Loboda
%T On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 194-212
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a10/
%G ru
%F TM_2020_311_a10
A. V. Loboda. On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 194-212. http://geodesic.mathdoc.fr/item/TM_2020_311_a10/

[1] R. S. Akopyan and A. V. Loboda, “On holomorphic realizations of nilpotent Lie algebras”, Funct. Anal. Appl., 53:2 (2019), 124–128 | DOI | MR | Zbl

[2] A. V. Atanov, I. G. Kossovskiy, and A. V. Loboda, “On orbits of action of 5-dimensional non-solvable Lie algebras in three-dimensional complex space”, Dokl. Math., 100:1 (2019), 377–379 | DOI | MR | Zbl

[3] A. V. Atanov and A. V. Loboda, “Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb C^3$”, Modern Methods of Function Theory and Related Problems, Part 4 (Mater. Voronezh Winter Math. Sch., Jan. 28–Feb. 2, 2019), Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz., 173, VINITI, Moscow, 2019, 86–115

[4] Beloshapka V.K., Kossovskiy I.G., “Homogeneous hypersurfaces in $\mathbb C^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[5] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl. Ser. 4, 11 (1932), 17–90 | DOI | MR

[6] Chern S.S., Moser J.K., “Real hypersurfaces in complex manifolds”, Acta math., 133 (1974), 219–271 | DOI | MR

[7] Doubrov B., Medvedev A., The D., Homogeneous Levi non-degenerate hypersurfaces in $\mathbb C^3$, E-print, 2017, arXiv: 1711.02389v1 [math.DG] | Zbl

[8] Ezhov V.V., Isaev A.V., “On the dimension of the stability group for a Levi non-degenerate hypersurface”, Ill. J. Math., 49:4 (2005), 1155–1169 ; “Erratum”, Ill. J. Math., 51:3 (2007), 1035–1036 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[10] Gong M.-P., Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbf R$), PhD thesis, Univ. Waterloo, Waterloo, 1998 | MR

[11] A. V. Isaev and M. A. Mishchenko, “Classification of spherical tube hypersurfaces having one minus in the signature of the Levi form”, Math. USSR, Izv., 33:3 (1989), 441–472 | DOI | MR | Zbl

[12] D. I. Khatskevich, G. V. Zin'kevich, and A. V. Loboda, “Degenerations of the orbits of decomposable 7-dimensional Lie algebras”, Collection of Student Research Papers of the Faculty of Computer Science, Voronezh State Univ., Part 2, Voronezh. Gos. Univ., Voronezh, 2020, 290–295 (in Russian)

[13] Kruglikov B., “Submaximally symmetric CR-structures”, J. Geom. Anal., 26:4 (2016), 3090–3097 | DOI | MR | Zbl

[14] N. G. Kruzhilin and A. V. Loboda, “Linearization of local automorphisms of pseudoconvex surfaces”, Sov. Math., Dokl., 28 (1983), 70–72 | MR | Zbl

[15] A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Sb. Math., 192:12 (2001), 1741–1761 | DOI | MR | Zbl

[16] A. V. Loboda, “Homogeneous real hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Proc. Steklov Inst. Math., 235 (2001), 107–135 | MR | Zbl

[17] A. V. Loboda, R. S. Akopyan, and V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zh. Sib. Fed. Univ., Mat. Fiz., 13:3 (2020), 360–372 | DOI | MR

[18] V. V. Morozov, “Classification of nilpotent Lie algebras of dimension six”, Izv. Vyssh. Uchebn. Zaved., Mat., 1958, no. 4, 161–171 | MR | Zbl

[19] G. M. Mubarakzyanov, “Classification of real structures of Lie algebras of fifth order”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963, no. 3, 99–106 | MR | Zbl

[20] A. A. Pan'kova, D. D. Vychikov, and A. V. Loboda, “Integration of one decomposable 7-dimensional Lie algebra”, Collection of Student Research Papers of the Faculty of Computer Science, Voronezh State Univ., Part 2, Voronezh. Gos. Univ., Voronezh, 2020, 229–235 (in Russian)