Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a1, author = {A. B. Bogatyrev and O. A. Grigor'ev}, title = {Filtration under a {Stepped} {Dam} and {Riemann} {Theta} {Functions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {14--26}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a1/} }
TY - JOUR AU - A. B. Bogatyrev AU - O. A. Grigor'ev TI - Filtration under a Stepped Dam and Riemann Theta Functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 14 EP - 26 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a1/ LA - ru ID - TM_2020_311_a1 ER -
A. B. Bogatyrev; O. A. Grigor'ev. Filtration under a Stepped Dam and Riemann Theta Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 14-26. http://geodesic.mathdoc.fr/item/TM_2020_311_a1/
[1] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Transl. Math. Monogr., 79, Am. Math. Soc., Providence, RI, 1990 | DOI | MR | MR | Zbl
[2] T. Ayano and V. M. Buchstaber, “Ultraelliptic integrals and two-dimensional sigma functions”, Funct. Anal. Appl., 53:3 (2019), 157–173 | DOI | MR | Zbl
[3] E. N. Bereslavskii, “The research of change in the complex velocity area in some problems of filtration theory”, Mat. Model., 28:1 (2016), 33–46 | MR
[4] E. N. Bereslavskii, L. A. Aleksandrova, and E. V. Pesterev, “On ground water seepage under hydraulic structures”, Math. Models Comput. Simul., 3:5 (2011), 619–628 | DOI
[5] G. Birkhoff, Hydrodynamics: A Study in Logic, Fact and Similitude, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl
[6] A. B. Bogatyrev, Extremal Polynomials and Riemann Surfaces, Springer, Berlin, 2012 | MR | Zbl
[7] A. B. Bogatyrev, “Conformal mapping of rectangular heptagons”, Sb. Math., 203:12 (2012), 1715–1735 | DOI | MR | Zbl
[8] Bogatyrev A.B., “Image of Abel–Jacobi map for hyperelliptic genus 3 and 4 curves”, J. Approx. Theory, 191 (2015), 38–45 ; arXiv: 1312.0445 [math.CV] | DOI | MR | Zbl
[9] Bogatyrev A.B., Grigor'ev O.A., “Conformal mapping of rectangular heptagons. II”, Comput. Methods Funct. Theory, 18:2 (2018), 221–238 | DOI | MR | Zbl
[10] Deconinck B., Heil M., Bobenko A., van Hoeij M., Schmies M., “Computing Riemann theta functions”, Math. Comput., 73:247 (2004), 1417–1442 | DOI | MR | Zbl
[11] Enolski V., Hartmann B., Kagramanova V., Kunz J., Lämmerzahl C., Sirimachan P., “Inversion of a general hyperelliptic integral and particle motion in Hořava–Lifshitz black hole space–times”, J. Math. Phys., 53:1 (2012), 012504 | DOI | MR | Zbl
[12] Farkas H.M., Kra I., Riemann surfaces, Grad. Texts Math., 71, Springer, New York, 1980 | DOI | MR | Zbl
[13] Ph. Griffiths and J. Harris, Principles of Algebraic Geometry, J. Wiley Sons, New York, 1978 | MR | MR | Zbl
[14] O. A. Grigor'ev, “Numerical–analytical method for conformal mapping of polygons with six right angles”, Comput. Math. Math. Phys., 53:10 (2013), 1447–1456 | DOI | MR | Zbl
[15] P. Ya. Kochina and N. N. Kochina, Problems of Motion with Free Surface in Underground Hydrodynamics, Red. Zh. “Usp. Fiz. Nauk”, Moscow, 1996 (in Russian)
[16] M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1973 (in Russian) | MR | MR
[17] D. Mumford, Tata Lectures on Theta. I: Introduction and Motivation: Theta Functions in One Variable. Basic Results on Theta Functions in Several Variables, Prog. Math., 28, Birkhäuser, Boston, 1983 | DOI | MR | MR | Zbl
[18] D. Mumford, Tata Lectures on Theta. II: Jacobian Theta Functions and Differential Equations, Prog. Math., 43, Birkhäuser, Boston, 1984 | MR | Zbl
[19] Poor C., “The hyperelliptic locus”, Duke Math. J., 76:3 (1994), 809–884 | DOI | MR | Zbl
[20] Rauch H.E., Farkas H.M., Theta functions with applications to Riemann surfaces, Williams Wilkins Co., Baltimore, 1974 | MR | Zbl
[21] Rosenhain G., Abhandlung über die Functionen zweier Variabler mit vier Perioden, welche die Inversen sind der ultra-elliptischen Integrale erster Klasse, Ostwald's Klass. Exact. Wiss., 65, W. Engelmann, Leipzig, 1895 | Zbl
[22] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl