Filtration under a Stepped Dam and Riemann Theta Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A novel semi-analytical method for calculating the characteristics of the flow in a porous medium bounded by a rectangular polygonal barrier is proposed. The method is based on the usage of Riemann theta functions. It allows one to effectively solve certain filtration problems with machine accuracy and obtain some characteristics of the solutions without solving the problem as a whole.
Keywords: porous media, Schwarz–Christoffel integral, theta functions, real meromorphic differentials, hydraulic structures.
Mots-clés : moduli spaces
@article{TM_2020_311_a1,
     author = {A. B. Bogatyrev and O. A. Grigor'ev},
     title = {Filtration under a {Stepped} {Dam} and {Riemann} {Theta} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
AU  - O. A. Grigor'ev
TI  - Filtration under a Stepped Dam and Riemann Theta Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 14
EP  - 26
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a1/
LA  - ru
ID  - TM_2020_311_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%A O. A. Grigor'ev
%T Filtration under a Stepped Dam and Riemann Theta Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 14-26
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a1/
%G ru
%F TM_2020_311_a1
A. B. Bogatyrev; O. A. Grigor'ev. Filtration under a Stepped Dam and Riemann Theta Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 14-26. http://geodesic.mathdoc.fr/item/TM_2020_311_a1/

[1] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Transl. Math. Monogr., 79, Am. Math. Soc., Providence, RI, 1990 | DOI | MR | MR | Zbl

[2] T. Ayano and V. M. Buchstaber, “Ultraelliptic integrals and two-dimensional sigma functions”, Funct. Anal. Appl., 53:3 (2019), 157–173 | DOI | MR | Zbl

[3] E. N. Bereslavskii, “The research of change in the complex velocity area in some problems of filtration theory”, Mat. Model., 28:1 (2016), 33–46 | MR

[4] E. N. Bereslavskii, L. A. Aleksandrova, and E. V. Pesterev, “On ground water seepage under hydraulic structures”, Math. Models Comput. Simul., 3:5 (2011), 619–628 | DOI

[5] G. Birkhoff, Hydrodynamics: A Study in Logic, Fact and Similitude, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl

[6] A. B. Bogatyrev, Extremal Polynomials and Riemann Surfaces, Springer, Berlin, 2012 | MR | Zbl

[7] A. B. Bogatyrev, “Conformal mapping of rectangular heptagons”, Sb. Math., 203:12 (2012), 1715–1735 | DOI | MR | Zbl

[8] Bogatyrev A.B., “Image of Abel–Jacobi map for hyperelliptic genus 3 and 4 curves”, J. Approx. Theory, 191 (2015), 38–45 ; arXiv: 1312.0445 [math.CV] | DOI | MR | Zbl

[9] Bogatyrev A.B., Grigor'ev O.A., “Conformal mapping of rectangular heptagons. II”, Comput. Methods Funct. Theory, 18:2 (2018), 221–238 | DOI | MR | Zbl

[10] Deconinck B., Heil M., Bobenko A., van Hoeij M., Schmies M., “Computing Riemann theta functions”, Math. Comput., 73:247 (2004), 1417–1442 | DOI | MR | Zbl

[11] Enolski V., Hartmann B., Kagramanova V., Kunz J., Lämmerzahl C., Sirimachan P., “Inversion of a general hyperelliptic integral and particle motion in Hořava–Lifshitz black hole space–times”, J. Math. Phys., 53:1 (2012), 012504 | DOI | MR | Zbl

[12] Farkas H.M., Kra I., Riemann surfaces, Grad. Texts Math., 71, Springer, New York, 1980 | DOI | MR | Zbl

[13] Ph. Griffiths and J. Harris, Principles of Algebraic Geometry, J. Wiley Sons, New York, 1978 | MR | MR | Zbl

[14] O. A. Grigor'ev, “Numerical–analytical method for conformal mapping of polygons with six right angles”, Comput. Math. Math. Phys., 53:10 (2013), 1447–1456 | DOI | MR | Zbl

[15] P. Ya. Kochina and N. N. Kochina, Problems of Motion with Free Surface in Underground Hydrodynamics, Red. Zh. “Usp. Fiz. Nauk”, Moscow, 1996 (in Russian)

[16] M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1973 (in Russian) | MR | MR

[17] D. Mumford, Tata Lectures on Theta. I: Introduction and Motivation: Theta Functions in One Variable. Basic Results on Theta Functions in Several Variables, Prog. Math., 28, Birkhäuser, Boston, 1983 | DOI | MR | MR | Zbl

[18] D. Mumford, Tata Lectures on Theta. II: Jacobian Theta Functions and Differential Equations, Prog. Math., 43, Birkhäuser, Boston, 1984 | MR | Zbl

[19] Poor C., “The hyperelliptic locus”, Duke Math. J., 76:3 (1994), 809–884 | DOI | MR | Zbl

[20] Rauch H.E., Farkas H.M., Theta functions with applications to Riemann surfaces, Williams Wilkins Co., Baltimore, 1974 | MR | Zbl

[21] Rosenhain G., Abhandlung über die Functionen zweier Variabler mit vier Perioden, welche die Inversen sind der ultra-elliptischen Integrale erster Klasse, Ostwald's Klass. Exact. Wiss., 65, W. Engelmann, Leipzig, 1895 | Zbl

[22] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl