Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a0, author = {A. I. Aptekarev and S. A. Denisov and M. L. Yattselev}, title = {Discrete {Schr\"odinger} {Operator} on a {Tree,} {Angelesco} {Potentials,} and {Their} {Perturbations}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {5--13}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a0/} }
TY - JOUR AU - A. I. Aptekarev AU - S. A. Denisov AU - M. L. Yattselev TI - Discrete Schr\"odinger Operator on a Tree, Angelesco Potentials, and Their Perturbations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 5 EP - 13 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a0/ LA - ru ID - TM_2020_311_a0 ER -
%0 Journal Article %A A. I. Aptekarev %A S. A. Denisov %A M. L. Yattselev %T Discrete Schr\"odinger Operator on a Tree, Angelesco Potentials, and Their Perturbations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 5-13 %V 311 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_311_a0/ %G ru %F TM_2020_311_a0
A. I. Aptekarev; S. A. Denisov; M. L. Yattselev. Discrete Schr\"odinger Operator on a Tree, Angelesco Potentials, and Their Perturbations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 5-13. http://geodesic.mathdoc.fr/item/TM_2020_311_a0/
[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver Boyd, Edinburgh, 1965 | MR | Zbl
[2] Allard C., Froese R., “A Mourre estimate for a Schrödinger operator on a binary tree”, Rev. Math. Phys., 12:12 (2000), 1655–1667 | DOI | MR | Zbl
[3] Angelesco A., “Sur deux extensions des fractions continues algébriques”, C. r. Acad. sci. Paris, 168 (1919), 262–265 | Zbl
[4] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case”, Math. USSR, Sb., 64:1 (1989), 57–84 | DOI | MR | Zbl | Zbl
[5] Aptekarev A.I., Denisov S.A., Yattselev M.L., “Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials”, Trans. Amer. Math. Soc., 373:2 (2020), 875–917 | DOI | MR | Zbl
[6] Aptekarev A.I., Denisov S.A., Yattselev M.L., Jacobi matrices on trees generated by Angelesco systems: Asymptotics of coefficients and essential spectrum, E-print, 2020, arXiv: 2004.04113 [math.SP] | MR
[7] Aptekarev A.I., Derevyagin M., Van Assche W., “On 2D discrete Schrödinger operators associated with multiple orthogonal polynomials”, J. Phys. A: Math. Theor., 48:6 (2015), 065201 | DOI | MR | Zbl
[8] Aptekarev A.I., Derevyagin M., Van Assche W., “Discrete integrable systems generated by Hermite–Padé approximants”, Nonlinearity, 29:5 (2016), 1487–1506 | DOI | MR | Zbl
[9] Aptekarev A.I., Kalyagin V., López Lagomasino G., Rocha I.A., “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 346–370 | DOI | MR | Zbl
[10] Aptekarev A.I., Kozhan R., “Differential equations for the recurrence coefficients limits for multiple orthogonal polynomials from a Nevai class”, J. Approx. Theory, 255 (2020), 105409 | DOI | MR | Zbl
[11] Breuer J., Denisov S., Eliaz L., “On the essential spectrum of Schrödinger operators on trees”, Math. Phys. Anal. Geom., 21:4 (2018), 33 | DOI | MR | Zbl
[12] Breuer J., Frank R.L., “Singular spectrum for radial trees”, Rev. Math. Phys., 21:7 (2009), 929–945 | DOI | MR | Zbl
[13] Denisov S.A., “On Rakhmanov's theorem for Jacobi matrices”, Proc. Amer. Math. Soc., 132:3 (2004), 847–852 | DOI | MR | Zbl
[14] Georgescu V., Golénia S., “Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees”, J. Funct. Anal., 227:2 (2005), 389–429 | DOI | MR | Zbl
[15] A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl
[16] Keller M., Lenz D., Warzel S., “Absolutely continuous spectrum for random operators on trees of finite cone type”, J. anal. math., 118:1 (2012), 363–396 | DOI | MR | Zbl
[17] E. L. Korotyaev and A. Laptev, “Trace formulas for a discrete Schrödinger operator”, Funct. Anal. Appl., 51:3 (2017), 225–229 | DOI | MR | Zbl
[18] E. L. Korotyaev and V. A. Sloutsh, “Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph”, Algebra Anal., 32:1 (2020), 12–39 | MR
[19] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Transl. Math. Monogr., 92, Am. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl
[20] Rabinovich V.S., Roch S., “The essential spectrum of Schrödinger operators on lattices”, J. Phys. A: Math. Gen., 39:26 (2006), 8377–8394 | DOI | MR | Zbl
[21] E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials”, Math. USSR, Sb., 32:2 (1977), 199–213 | DOI | MR | Zbl
[22] E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR, Sb., 46:1 (1983), 105–117 | DOI | MR | Zbl | Zbl
[23] Reed M., Simon B., Methods of modern mathematical physics, v. 1, Functional analysis, Acad. Press, New York, 1980 | MR | Zbl
[24] Shubin M.A., “Discrete magnetic Laplacian”, Commun. Math. Phys., 164:2 (1994), 259–275 | DOI | MR | Zbl
[25] Van Assche W., “Nearest neighbor recurrence relations for multiple orthogonal polynomials”, J. Approx. Theory, 163:10 (2011), 1427–1448 | DOI | MR | Zbl
[26] Yattselev M.L., “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Can. J. Math., 68:5 (2016), 1159–1200 | DOI | MR