Discrete Schr\"odinger Operator on a Tree, Angelesco Potentials, and Their Perturbations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 5-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of discrete Schrödinger operators on an infinite homogeneous rooted tree. Potentials for these operators are given by the coefficients of recurrence relations satisfied on a multidimensional lattice by multiple orthogonal polynomials. For operators on a binary tree with potentials generated by multiple orthogonal polynomials with respect to systems of measures supported on disjoint intervals (Angelesco systems) and for compact perturbations of such operators, we show that the essential spectrum is equal to the union of the intervals supporting the orthogonality measures.
@article{TM_2020_311_a0,
     author = {A. I. Aptekarev and S. A. Denisov and M. L. Yattselev},
     title = {Discrete {Schr\"odinger} {Operator} on a {Tree,} {Angelesco} {Potentials,} and {Their} {Perturbations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a0/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - S. A. Denisov
AU  - M. L. Yattselev
TI  - Discrete Schr\"odinger Operator on a Tree, Angelesco Potentials, and Their Perturbations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 5
EP  - 13
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a0/
LA  - ru
ID  - TM_2020_311_a0
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A S. A. Denisov
%A M. L. Yattselev
%T Discrete Schr\"odinger Operator on a Tree, Angelesco Potentials, and Their Perturbations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 5-13
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a0/
%G ru
%F TM_2020_311_a0
A. I. Aptekarev; S. A. Denisov; M. L. Yattselev. Discrete Schr\"odinger Operator on a Tree, Angelesco Potentials, and Their Perturbations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 5-13. http://geodesic.mathdoc.fr/item/TM_2020_311_a0/

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver Boyd, Edinburgh, 1965 | MR | Zbl

[2] Allard C., Froese R., “A Mourre estimate for a Schrödinger operator on a binary tree”, Rev. Math. Phys., 12:12 (2000), 1655–1667 | DOI | MR | Zbl

[3] Angelesco A., “Sur deux extensions des fractions continues algébriques”, C. r. Acad. sci. Paris, 168 (1919), 262–265 | Zbl

[4] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case”, Math. USSR, Sb., 64:1 (1989), 57–84 | DOI | MR | Zbl | Zbl

[5] Aptekarev A.I., Denisov S.A., Yattselev M.L., “Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials”, Trans. Amer. Math. Soc., 373:2 (2020), 875–917 | DOI | MR | Zbl

[6] Aptekarev A.I., Denisov S.A., Yattselev M.L., Jacobi matrices on trees generated by Angelesco systems: Asymptotics of coefficients and essential spectrum, E-print, 2020, arXiv: 2004.04113 [math.SP] | MR

[7] Aptekarev A.I., Derevyagin M., Van Assche W., “On 2D discrete Schrödinger operators associated with multiple orthogonal polynomials”, J. Phys. A: Math. Theor., 48:6 (2015), 065201 | DOI | MR | Zbl

[8] Aptekarev A.I., Derevyagin M., Van Assche W., “Discrete integrable systems generated by Hermite–Padé approximants”, Nonlinearity, 29:5 (2016), 1487–1506 | DOI | MR | Zbl

[9] Aptekarev A.I., Kalyagin V., López Lagomasino G., Rocha I.A., “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 346–370 | DOI | MR | Zbl

[10] Aptekarev A.I., Kozhan R., “Differential equations for the recurrence coefficients limits for multiple orthogonal polynomials from a Nevai class”, J. Approx. Theory, 255 (2020), 105409 | DOI | MR | Zbl

[11] Breuer J., Denisov S., Eliaz L., “On the essential spectrum of Schrödinger operators on trees”, Math. Phys. Anal. Geom., 21:4 (2018), 33 | DOI | MR | Zbl

[12] Breuer J., Frank R.L., “Singular spectrum for radial trees”, Rev. Math. Phys., 21:7 (2009), 929–945 | DOI | MR | Zbl

[13] Denisov S.A., “On Rakhmanov's theorem for Jacobi matrices”, Proc. Amer. Math. Soc., 132:3 (2004), 847–852 | DOI | MR | Zbl

[14] Georgescu V., Golénia S., “Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees”, J. Funct. Anal., 227:2 (2005), 389–429 | DOI | MR | Zbl

[15] A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl

[16] Keller M., Lenz D., Warzel S., “Absolutely continuous spectrum for random operators on trees of finite cone type”, J. anal. math., 118:1 (2012), 363–396 | DOI | MR | Zbl

[17] E. L. Korotyaev and A. Laptev, “Trace formulas for a discrete Schrödinger operator”, Funct. Anal. Appl., 51:3 (2017), 225–229 | DOI | MR | Zbl

[18] E. L. Korotyaev and V. A. Sloutsh, “Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph”, Algebra Anal., 32:1 (2020), 12–39 | MR

[19] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Transl. Math. Monogr., 92, Am. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl

[20] Rabinovich V.S., Roch S., “The essential spectrum of Schrödinger operators on lattices”, J. Phys. A: Math. Gen., 39:26 (2006), 8377–8394 | DOI | MR | Zbl

[21] E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials”, Math. USSR, Sb., 32:2 (1977), 199–213 | DOI | MR | Zbl

[22] E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR, Sb., 46:1 (1983), 105–117 | DOI | MR | Zbl | Zbl

[23] Reed M., Simon B., Methods of modern mathematical physics, v. 1, Functional analysis, Acad. Press, New York, 1980 | MR | Zbl

[24] Shubin M.A., “Discrete magnetic Laplacian”, Commun. Math. Phys., 164:2 (1994), 259–275 | DOI | MR | Zbl

[25] Van Assche W., “Nearest neighbor recurrence relations for multiple orthogonal polynomials”, J. Approx. Theory, 163:10 (2011), 1427–1448 | DOI | MR | Zbl

[26] Yattselev M.L., “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Can. J. Math., 68:5 (2016), 1159–1200 | DOI | MR