Existence of Optimal Stationary States of Exploited Populations with Diffusion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 135-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We study population dynamics with diffusion described by a parabolic equation with a logistic reaction term in the presence of exploitation consisting in constant harvesting of a part of the population density. Under natural constraints on the parameters of the model, we prove that there exists a stable stationary state of the population that provides the maximum profit of exploitation in the natural form.
@article{TM_2020_310_a8,
     author = {A. A. Davydov},
     title = {Existence of {Optimal} {Stationary} {States} of {Exploited} {Populations} with {Diffusion}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a8/}
}
TY  - JOUR
AU  - A. A. Davydov
TI  - Existence of Optimal Stationary States of Exploited Populations with Diffusion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 135
EP  - 142
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a8/
LA  - ru
ID  - TM_2020_310_a8
ER  - 
%0 Journal Article
%A A. A. Davydov
%T Existence of Optimal Stationary States of Exploited Populations with Diffusion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 135-142
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a8/
%G ru
%F TM_2020_310_a8
A. A. Davydov. Existence of Optimal Stationary States of Exploited Populations with Diffusion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 135-142. http://geodesic.mathdoc.fr/item/TM_2020_310_a8/