Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a7, author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev}, title = {On {Realization} of {Topological} {Conjugacy} {Classes} of {Morse--Smale} {Cascades} on the {Sphere} $S^n$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {119--134}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a7/} }
TY - JOUR AU - V. Z. Grines AU - E. Ya. Gurevich AU - V. S. Medvedev TI - On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 119 EP - 134 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a7/ LA - ru ID - TM_2020_310_a7 ER -
%0 Journal Article %A V. Z. Grines %A E. Ya. Gurevich %A V. S. Medvedev %T On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 119-134 %V 310 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_310_a7/ %G ru %F TM_2020_310_a7
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev. On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 119-134. http://geodesic.mathdoc.fr/item/TM_2020_310_a7/
[1] Bonatti C., Grines V.Z., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl
[2] Brown M., “Locally flat imbeddings of topological manifolds”, Ann. Math. Ser. 2, 75:2 (1962), 331–341 | DOI | MR | Zbl
[3] Cantrell J.C., “Almost locally flat embeddings of $S^{n-1}$ in $S^n$”, Bull. Amer. Math. Soc., 69:5 (1963), 716–718 | DOI | MR | Zbl
[4] V. Z. Grines, E. Ya. Gurevich, and V. S. Medvedev, “Peixoto graph of Morse–Smale diffeomorphisms on manifolds of dimension greater than three”, Proc. Steklov Inst. Math., 261 (2008), 59–83 | DOI | MR | Zbl
[5] V. Z. Grines, E. Ya. Gurevich, and V. S. Medvedev, “Classification of Morse–Smale diffeomorphisms with one-dimensional set of unstable separatrices”, Proc. Steklov Inst. Math., 270 (2010), 57–79 | DOI | MR | Zbl
[6] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, and O. V. Pochinka, “Embedding in a flow of Morse–Smale diffeomorphisms on manifolds of dimension higher than two”, Math. Notes, 91:5 (2012), 742–745 | DOI | MR | Zbl
[7] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, and O. V. Pochinka, “On embedding a Morse–Smale diffeomorphism on a 3-manifold in a topological flow”, Sb. Math., 203:12 (2012), 1761–1784 | DOI | MR | Zbl
[8] Grines V.Z., Gurevich E.Ya., Pochinka O.V., “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci., 208:1 (2015), 81–90 | DOI | MR | Zbl
[9] V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka, “On embedding Morse–Smale diffeomorphisms on the sphere in topological flows”, Russ. Math. Surv., 71:6 (2016), 1146–1148 | DOI | MR | Zbl
[10] Grines V., Gurevich E., Pochinka O., “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Moscow Math. J., 19:4 (2019), 739–760 | DOI | MR | Zbl
[11] V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka, “A combinatorial invariant of Morse–Smale diffeomorphisms without heteroclinic intersections on the sphere $S^n$, $n\geq 4$”, Math. Notes, 105:1 (2019), 132–136 | DOI | MR | Zbl
[12] Grines V., Gurevich E., Pochinka O., Malyshev D., On topological classification of Morse–Smale diffeomorphisms on the sphere $S^n$, E-print, 2019, arXiv: 1911.10234 [math.DS] | MR
[13] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, and O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russ. Math. Surv., 74:1 (2019), 37–110 | DOI | MR | Zbl
[14] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI | MR | Zbl
[15] M. W. Hirsch, Differential Topology, Grad. Texts Math., 33, Springer, New York, 1976 | DOI | MR | Zbl
[16] V. E. Kruglov and O. V. Pochinka, “A criterion of topological conjugacy of multidimensional gradient-like flows without heteroclinic intersections on the sphere”, Probl. Mat. Anal., 104 (2020), 21–28 | MR
[17] J. Palis Jr. and W. de Melo, Geometric Theory of Dynamical Systems: An Introduction, Springer, New York, 1982 | MR | Zbl
[18] S. Yu. Pilyugin, “Phase diagrams determining Morse–Smale systems without periodic trajectories on spheres”, Diff. Eqns., 14:2 (1978), 170–177 | MR | Zbl | Zbl
[19] O. V. Pochinka, S. Yu. Galkina, and D. D. Shubin, “Modeling of gradient-like flows on $n$-sphere”, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinein. Din., 27:6 (2019), 63–72
[20] Robinson C., Dynamical systems: Stability, symbolic dynamics, and chaos, CRC Press, Boca Raton, FL, 1999 | MR | Zbl
[21] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[22] E. V. Zhuzhoma and V. S. Medvedev, “Continuous Morse–Smale flows with three equilibrium positions”, Sb. Math., 207:5 (2016), 702–723 | DOI | MR | Zbl