On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 119-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class $G(S^n)$ of orientation-preserving Morse–Smale diffeomorphisms defined on the sphere $S^n$ of dimension $n\geq 4$ under the assumption that the invariant manifolds of different saddle periodic points are disjoint. For diffeomorphisms in this class, we describe an algorithm for constructing representatives of all topological conjugacy classes.
@article{TM_2020_310_a7,
     author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev},
     title = {On {Realization} of {Topological} {Conjugacy} {Classes} of {Morse--Smale} {Cascades} on the {Sphere} $S^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {119--134},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a7/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - V. S. Medvedev
TI  - On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 119
EP  - 134
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a7/
LA  - ru
ID  - TM_2020_310_a7
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A V. S. Medvedev
%T On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 119-134
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a7/
%G ru
%F TM_2020_310_a7
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev. On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 119-134. http://geodesic.mathdoc.fr/item/TM_2020_310_a7/

[1] Bonatti C., Grines V.Z., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl

[2] Brown M., “Locally flat imbeddings of topological manifolds”, Ann. Math. Ser. 2, 75:2 (1962), 331–341 | DOI | MR | Zbl

[3] Cantrell J.C., “Almost locally flat embeddings of $S^{n-1}$ in $S^n$”, Bull. Amer. Math. Soc., 69:5 (1963), 716–718 | DOI | MR | Zbl

[4] V. Z. Grines, E. Ya. Gurevich, and V. S. Medvedev, “Peixoto graph of Morse–Smale diffeomorphisms on manifolds of dimension greater than three”, Proc. Steklov Inst. Math., 261 (2008), 59–83 | DOI | MR | Zbl

[5] V. Z. Grines, E. Ya. Gurevich, and V. S. Medvedev, “Classification of Morse–Smale diffeomorphisms with one-dimensional set of unstable separatrices”, Proc. Steklov Inst. Math., 270 (2010), 57–79 | DOI | MR | Zbl

[6] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, and O. V. Pochinka, “Embedding in a flow of Morse–Smale diffeomorphisms on manifolds of dimension higher than two”, Math. Notes, 91:5 (2012), 742–745 | DOI | MR | Zbl

[7] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, and O. V. Pochinka, “On embedding a Morse–Smale diffeomorphism on a 3-manifold in a topological flow”, Sb. Math., 203:12 (2012), 1761–1784 | DOI | MR | Zbl

[8] Grines V.Z., Gurevich E.Ya., Pochinka O.V., “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci., 208:1 (2015), 81–90 | DOI | MR | Zbl

[9] V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka, “On embedding Morse–Smale diffeomorphisms on the sphere in topological flows”, Russ. Math. Surv., 71:6 (2016), 1146–1148 | DOI | MR | Zbl

[10] Grines V., Gurevich E., Pochinka O., “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Moscow Math. J., 19:4 (2019), 739–760 | DOI | MR | Zbl

[11] V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka, “A combinatorial invariant of Morse–Smale diffeomorphisms without heteroclinic intersections on the sphere $S^n$, $n\geq 4$”, Math. Notes, 105:1 (2019), 132–136 | DOI | MR | Zbl

[12] Grines V., Gurevich E., Pochinka O., Malyshev D., On topological classification of Morse–Smale diffeomorphisms on the sphere $S^n$, E-print, 2019, arXiv: 1911.10234 [math.DS] | MR

[13] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, and O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russ. Math. Surv., 74:1 (2019), 37–110 | DOI | MR | Zbl

[14] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI | MR | Zbl

[15] M. W. Hirsch, Differential Topology, Grad. Texts Math., 33, Springer, New York, 1976 | DOI | MR | Zbl

[16] V. E. Kruglov and O. V. Pochinka, “A criterion of topological conjugacy of multidimensional gradient-like flows without heteroclinic intersections on the sphere”, Probl. Mat. Anal., 104 (2020), 21–28 | MR

[17] J. Palis Jr. and W. de Melo, Geometric Theory of Dynamical Systems: An Introduction, Springer, New York, 1982 | MR | Zbl

[18] S. Yu. Pilyugin, “Phase diagrams determining Morse–Smale systems without periodic trajectories on spheres”, Diff. Eqns., 14:2 (1978), 170–177 | MR | Zbl | Zbl

[19] O. V. Pochinka, S. Yu. Galkina, and D. D. Shubin, “Modeling of gradient-like flows on $n$-sphere”, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinein. Din., 27:6 (2019), 63–72

[20] Robinson C., Dynamical systems: Stability, symbolic dynamics, and chaos, CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[21] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[22] E. V. Zhuzhoma and V. S. Medvedev, “Continuous Morse–Smale flows with three equilibrium positions”, Sb. Math., 207:5 (2016), 702–723 | DOI | MR | Zbl