Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a6, author = {John E. Gough and Tudor S. Ratiu and Oleg G. Smolyanov}, title = {Quantum {Anomalies} via {Differential} {Properties} of {Lebesgue--Feynman} {Generalized} {Measures}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {107--118}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a6/} }
TY - JOUR AU - John E. Gough AU - Tudor S. Ratiu AU - Oleg G. Smolyanov TI - Quantum Anomalies via Differential Properties of Lebesgue--Feynman Generalized Measures JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 107 EP - 118 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a6/ LA - ru ID - TM_2020_310_a6 ER -
%0 Journal Article %A John E. Gough %A Tudor S. Ratiu %A Oleg G. Smolyanov %T Quantum Anomalies via Differential Properties of Lebesgue--Feynman Generalized Measures %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 107-118 %V 310 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_310_a6/ %G ru %F TM_2020_310_a6
John E. Gough; Tudor S. Ratiu; Oleg G. Smolyanov. Quantum Anomalies via Differential Properties of Lebesgue--Feynman Generalized Measures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 107-118. http://geodesic.mathdoc.fr/item/TM_2020_310_a6/
[1] L. Accardi, O. G. Smolyanov, and M. O. Smolyanova, “Change of variable formulas for infinite-dimensional distributions”, Math. Notes, 60:2 (1996), 212–215 | DOI | MR | Zbl
[2] Bogachev V.I., Smolyanov O.G., Topological vector spaces and their applications, Springer, Cham, 2017 | MR | Zbl
[3] Cartier P., DeWitt-Morette C., Functional integration: Action and symmetries, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[4] Chernoff P.R., “Note on product formulas for operator semigroups”, J. Funct. Anal., 2 (1968), 238–242 | DOI | MR | Zbl
[5] Dolan B.P., “A tale of two derivatives: Phase space symmetries and Noether charges in diffeomorphism invariant theories”, Phys. Rev. D, 98:4 (2018), 044009 ; arXiv: 1804.07689 [gr-qc] | DOI | MR
[6] Feynman R.P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20:2 (1948), 367–387 | DOI | MR | Zbl
[7] Feynman R.P., “An operator calculus having applications in quantum electrodynamics”, Phys. Rev., 84:1 (1951), 108–128 | DOI | MR | Zbl
[8] Fujikawa K., “Evaluation of the chiral anomaly in gauge theories with $\gamma _5$ couplings”, Phys. Rev. D, 29:2 (1984), 285–292 | DOI | MR
[9] Fujikawa K., Suzuki H., Path integrals and quantum anomalies, Oxford Univ. Press, Oxford, 2013 | MR | Zbl
[10] J. Gough, T. S. Ratiu, and O. G. Smolyanov, “Quantum anomalies and logarithmic derivatives of Feynman pseudomeasures”, Dokl. Math., 92:3 (2015), 764–768 | DOI | MR | Zbl
[11] J. Gough, T. S. Ratiu, and O. G. Smolyanov, “Noether theorems and quantum anomalies”, Dokl. Math., 95:1 (2017), 26–30 | DOI | MR | Zbl
[12] Kupsch J., Smolyanov O.G., “Functional representations for Fock superalgebras”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1:2 (1998), 285–324 | DOI | MR | Zbl
[13] Nelson E., “Feynman integrals and the Schrödinger equation”, J. Math. Phys., 5 (1964), 332–343 | DOI | MR | Zbl
[14] Pokorski S., Gauge Field Theories, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[15] Smolyanov O.G., Tokarev A.G., Truman A., “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[16] Smolyanov O.G., von Weizsäcker H., “Differentiable families of measures”, J. Funct. Anal., 118:2 (1993), 454–476 | DOI | MR | Zbl