Various Equivalence Relations in Global Bifurcation Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 86-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss various definitions of equivalence for bifurcations of vector fields on the sphere and give a large number of examples (both known and new) that illustrate the advantages and disadvantages of different definitions. In addition to the classical definitions of strong and weak equivalence, we consider new notions of Sing-equivalence and moderate equivalence. These definitions seem to be more relevant to and consistent with the intuitive notion of equivalent bifurcations. They were introduced and used to describe the structural instability of some finite-parameter families of vector fields on the sphere and to study invariants of their classification.
Keywords: bifurcation theory, vector fields on the sphere, equivalence of families of vector fields.
@article{TM_2020_310_a5,
     author = {N. B. Goncharuk and Yu. S. Ilyashenko},
     title = {Various {Equivalence} {Relations} in {Global} {Bifurcation} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--106},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a5/}
}
TY  - JOUR
AU  - N. B. Goncharuk
AU  - Yu. S. Ilyashenko
TI  - Various Equivalence Relations in Global Bifurcation Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 86
EP  - 106
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a5/
LA  - ru
ID  - TM_2020_310_a5
ER  - 
%0 Journal Article
%A N. B. Goncharuk
%A Yu. S. Ilyashenko
%T Various Equivalence Relations in Global Bifurcation Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 86-106
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a5/
%G ru
%F TM_2020_310_a5
N. B. Goncharuk; Yu. S. Ilyashenko. Various Equivalence Relations in Global Bifurcation Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 86-106. http://geodesic.mathdoc.fr/item/TM_2020_310_a5/

[1] A. A. Andronov and E. A. Leontovich, “Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle–node type”, Am. Math. Soc. Transl., Ser. 2, 33 (1963), 189–231 | Zbl | Zbl

[2] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Nauka, Moscow, 1966 | MR | Zbl

[3] J. Wiley Sons, New York, 1973 | MR | Zbl

[4] V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations, Nauka, Moscow, 1978 | MR | MR | Zbl

[5] Geometrical Methods in the Theory of Ordinary Differential Equations, Grundl. Math. Wiss., 250, Springer, New York, 1983 | MR | MR | Zbl

[6] V. I. Arnol'd, V. S. Afraimovich, Yu. S. Il'yashenko, and L. P. Shil'nikov, “Bifurcation theory”, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl., 5 (1986), 5–218 | Zbl

[7] Dynamical Systems V: Bifurcation Theory and Catastrophe Theory, Encycl. Math. Sci., 5, Springer, Berlin, 1994, 1–205 | Zbl

[8] Camacho C., “On the local structure of conformal mappings and holomorphic vector fields in $\mathbf C^2$”, Journées singulières de Dijon (12–16 juin 1978), Astérisque, 59–60, Soc. math. France, Paris, 1978, 83–94 | MR

[9] A. V. Dukov, “Bifurcations of the ‘heart’ polycycle in generic 2-parameter families”, Trans. Moscow Math. Soc., 2018 (2018), 209–229 | DOI | MR | Zbl

[10] Dumortier F., Llibre J., Artés J.C., Qualitative theory of planar differential systems, Universitext, Springer, Berlin, 2006 | MR | Zbl

[11] Ecalle J., Les fonctions résurgentes. T. 1: Les algèbres de fonctions résurgentes, Publ. Math. Orsay, 81-05, Univ. Paris-Sud. Dép. Math., Orsay, 1981 | MR

[12] R. M. Fedorov, “Upper bounds for the number of orbital topological types of planar polynomial vector fields “modulo limit cycles””, Proc. Steklov Inst. Math., 254 (2006), 238–254 | DOI | MR | Zbl

[13] Goncharuk N., Ilyashenko Yu., Large bifurcation supports, E-print, 2018, arXiv: 1804.04596 [math.DS]

[14] Goncharuk N., Ilyashenko Yu., Solodovnikov N., “Global bifurcations in generic one-parameter families with a parabolic cycle on $S^2$”, Moscow Math. J., 19:4 (2019), 709–737 ; arXiv: 1707.09779 [math.DS] | DOI | MR | Zbl | MR

[15] Goncharuk N., Kudryashov Yu., “Bifurcations of the polycycle “tears of the heart”: Multiple numerical invariants”, Moscow Math. J., 20:2 (2020), 323–341 ; arXiv: 1808.07459 [math.DS] | DOI | MR | Zbl

[16] Goncharuk N., Kudryashov Yu.G., Families of vector fields with many numerical invariants, E-print, 2020, arXiv: 2003.01269 [math.DS] | MR

[17] Goncharuk N., Kudryashov Yu.G., Solodovnikov N., “New structurally unstable families of planar vector fields”, Nonlinearity (to appear) | MR

[18] Ilyashenko Y., “Towards the general theory of global planar bifurcations”, Mathematical sciences with multidisciplinary applications: In honor of Prof. C. Rousseau. And in recognition of the Mathematics for Planet Earth initiative, Springer Proc. Math. Stat., 157, ed. by B. Toni, Springer, Cham, 2016, 269–299 | Zbl

[19] Ilyashenko Yu., Kudryashov Yu., Schurov I., “Global bifurcations in the two-sphere: A new perspective”, Invent. math., 213:2 (2018), 461–506 | DOI | MR | Zbl

[20] Ilyashenko Yu., Solodovnikov N., “Global bifurcations in generic one-parameter families with a separatrix loop on $S^2$”, Moscow Math. J., 18:1 (2018), 93–115 | DOI | MR | Zbl

[21] Kotova A., Stanzo V., “On few-parameter generic families of vector fields on the two-dimensional sphere”, Concerning the Hilbert 16th problem, AMS Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995, 155–201 | MR | Zbl

[22] Malta I.P., Palis J., “Families of vector fields with finite modulus of stability”, Dynamical systems and turbulence (Warwick 1980), Lect. Notes Math., 898, Springer, Berlin, 1981, 212–229 | DOI | MR

[23] Newhouse S., Palis J., Takens F., “Bifurcations and stability of families of diffeomorphisms”, Publ. math. Inst. hautes étud. sci., 57 (1983), 5–71 | DOI | MR | Zbl

[24] V. Sh. Roitenberg, Nonlocal two-parameter bifurcations of vector fields on surfaces, Cand. Sci. (Phys.–Math.) Dissertation, Yaroslav. Gos. Tekh. Univ., Yaroslavl, 2000

[25] Roussarie R., “On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields”, Bol. Soc. Bras. Mat., 17:1 (1986), 67–101 | DOI | MR | Zbl

[26] Roussarie R., “Weak and continuous equivalences for families of line diffeomorphisms”, Dynamical systems and bifurcation theory: Proc. Meet. (Rio de Janeiro, 1985), Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow, 1987, 377–385 | MR

[27] A. A. Shcherbakov, “Topological classification of germs of conformal mappings with identical linear part”, Moscow Univ. Math. Bull., 37:3 (1982), 60–65 | MR | Zbl

[28] Starichkova V., “Global bifurcations in generic one-parameter families on $\mathbb S^2$”, Regul. Chaotic Dyn., 23:6 (2018), 767–784 | DOI | MR | Zbl

[29] Takens F., “Normal forms for certain singularities of vector fields”, Ann. Inst. Fourier, 23:2 (1973), 163–195 | DOI | MR | Zbl

[30] S. M. Voronin, “Analytic classification of germs of conformal mappings $(\mathbf C,0)\to (\mathbf C,0)$ with identity linear part”, Funct. Anal. Appl., 15:1 (1981), 1–13 | DOI | MR | Zbl