Various Equivalence Relations in Global Bifurcation Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 86-106
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss various definitions of equivalence for bifurcations of vector fields on the sphere and give a large number of examples (both known and new) that illustrate the advantages and disadvantages of different definitions. In addition to the classical definitions of strong and weak equivalence, we consider new notions of Sing-equivalence and moderate equivalence. These definitions seem to be more relevant to and consistent with the intuitive notion of equivalent bifurcations. They were introduced and used to describe the structural instability of some finite-parameter families of vector fields on the sphere and to study invariants of their classification.
Keywords:
bifurcation theory, vector fields on the sphere, equivalence of families of vector fields.
@article{TM_2020_310_a5,
author = {N. B. Goncharuk and Yu. S. Ilyashenko},
title = {Various {Equivalence} {Relations} in {Global} {Bifurcation} {Theory}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {86--106},
publisher = {mathdoc},
volume = {310},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a5/}
}
TY - JOUR AU - N. B. Goncharuk AU - Yu. S. Ilyashenko TI - Various Equivalence Relations in Global Bifurcation Theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 86 EP - 106 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a5/ LA - ru ID - TM_2020_310_a5 ER -
N. B. Goncharuk; Yu. S. Ilyashenko. Various Equivalence Relations in Global Bifurcation Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 86-106. http://geodesic.mathdoc.fr/item/TM_2020_310_a5/