Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a5, author = {N. B. Goncharuk and Yu. S. Ilyashenko}, title = {Various {Equivalence} {Relations} in {Global} {Bifurcation} {Theory}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {86--106}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a5/} }
TY - JOUR AU - N. B. Goncharuk AU - Yu. S. Ilyashenko TI - Various Equivalence Relations in Global Bifurcation Theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 86 EP - 106 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a5/ LA - ru ID - TM_2020_310_a5 ER -
N. B. Goncharuk; Yu. S. Ilyashenko. Various Equivalence Relations in Global Bifurcation Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 86-106. http://geodesic.mathdoc.fr/item/TM_2020_310_a5/
[1] A. A. Andronov and E. A. Leontovich, “Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle–node type”, Am. Math. Soc. Transl., Ser. 2, 33 (1963), 189–231 | Zbl | Zbl
[2] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Nauka, Moscow, 1966 | MR | Zbl
[3] J. Wiley Sons, New York, 1973 | MR | Zbl
[4] V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations, Nauka, Moscow, 1978 | MR | MR | Zbl
[5] Geometrical Methods in the Theory of Ordinary Differential Equations, Grundl. Math. Wiss., 250, Springer, New York, 1983 | MR | MR | Zbl
[6] V. I. Arnol'd, V. S. Afraimovich, Yu. S. Il'yashenko, and L. P. Shil'nikov, “Bifurcation theory”, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl., 5 (1986), 5–218 | Zbl
[7] Dynamical Systems V: Bifurcation Theory and Catastrophe Theory, Encycl. Math. Sci., 5, Springer, Berlin, 1994, 1–205 | Zbl
[8] Camacho C., “On the local structure of conformal mappings and holomorphic vector fields in $\mathbf C^2$”, Journées singulières de Dijon (12–16 juin 1978), Astérisque, 59–60, Soc. math. France, Paris, 1978, 83–94 | MR
[9] A. V. Dukov, “Bifurcations of the ‘heart’ polycycle in generic 2-parameter families”, Trans. Moscow Math. Soc., 2018 (2018), 209–229 | DOI | MR | Zbl
[10] Dumortier F., Llibre J., Artés J.C., Qualitative theory of planar differential systems, Universitext, Springer, Berlin, 2006 | MR | Zbl
[11] Ecalle J., Les fonctions résurgentes. T. 1: Les algèbres de fonctions résurgentes, Publ. Math. Orsay, 81-05, Univ. Paris-Sud. Dép. Math., Orsay, 1981 | MR
[12] R. M. Fedorov, “Upper bounds for the number of orbital topological types of planar polynomial vector fields “modulo limit cycles””, Proc. Steklov Inst. Math., 254 (2006), 238–254 | DOI | MR | Zbl
[13] Goncharuk N., Ilyashenko Yu., Large bifurcation supports, E-print, 2018, arXiv: 1804.04596 [math.DS]
[14] Goncharuk N., Ilyashenko Yu., Solodovnikov N., “Global bifurcations in generic one-parameter families with a parabolic cycle on $S^2$”, Moscow Math. J., 19:4 (2019), 709–737 ; arXiv: 1707.09779 [math.DS] | DOI | MR | Zbl | MR
[15] Goncharuk N., Kudryashov Yu., “Bifurcations of the polycycle “tears of the heart”: Multiple numerical invariants”, Moscow Math. J., 20:2 (2020), 323–341 ; arXiv: 1808.07459 [math.DS] | DOI | MR | Zbl
[16] Goncharuk N., Kudryashov Yu.G., Families of vector fields with many numerical invariants, E-print, 2020, arXiv: 2003.01269 [math.DS] | MR
[17] Goncharuk N., Kudryashov Yu.G., Solodovnikov N., “New structurally unstable families of planar vector fields”, Nonlinearity (to appear) | MR
[18] Ilyashenko Y., “Towards the general theory of global planar bifurcations”, Mathematical sciences with multidisciplinary applications: In honor of Prof. C. Rousseau. And in recognition of the Mathematics for Planet Earth initiative, Springer Proc. Math. Stat., 157, ed. by B. Toni, Springer, Cham, 2016, 269–299 | Zbl
[19] Ilyashenko Yu., Kudryashov Yu., Schurov I., “Global bifurcations in the two-sphere: A new perspective”, Invent. math., 213:2 (2018), 461–506 | DOI | MR | Zbl
[20] Ilyashenko Yu., Solodovnikov N., “Global bifurcations in generic one-parameter families with a separatrix loop on $S^2$”, Moscow Math. J., 18:1 (2018), 93–115 | DOI | MR | Zbl
[21] Kotova A., Stanzo V., “On few-parameter generic families of vector fields on the two-dimensional sphere”, Concerning the Hilbert 16th problem, AMS Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995, 155–201 | MR | Zbl
[22] Malta I.P., Palis J., “Families of vector fields with finite modulus of stability”, Dynamical systems and turbulence (Warwick 1980), Lect. Notes Math., 898, Springer, Berlin, 1981, 212–229 | DOI | MR
[23] Newhouse S., Palis J., Takens F., “Bifurcations and stability of families of diffeomorphisms”, Publ. math. Inst. hautes étud. sci., 57 (1983), 5–71 | DOI | MR | Zbl
[24] V. Sh. Roitenberg, Nonlocal two-parameter bifurcations of vector fields on surfaces, Cand. Sci. (Phys.–Math.) Dissertation, Yaroslav. Gos. Tekh. Univ., Yaroslavl, 2000
[25] Roussarie R., “On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields”, Bol. Soc. Bras. Mat., 17:1 (1986), 67–101 | DOI | MR | Zbl
[26] Roussarie R., “Weak and continuous equivalences for families of line diffeomorphisms”, Dynamical systems and bifurcation theory: Proc. Meet. (Rio de Janeiro, 1985), Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow, 1987, 377–385 | MR
[27] A. A. Shcherbakov, “Topological classification of germs of conformal mappings with identical linear part”, Moscow Univ. Math. Bull., 37:3 (1982), 60–65 | MR | Zbl
[28] Starichkova V., “Global bifurcations in generic one-parameter families on $\mathbb S^2$”, Regul. Chaotic Dyn., 23:6 (2018), 767–784 | DOI | MR | Zbl
[29] Takens F., “Normal forms for certain singularities of vector fields”, Ann. Inst. Fourier, 23:2 (1973), 163–195 | DOI | MR | Zbl
[30] S. M. Voronin, “Analytic classification of germs of conformal mappings $(\mathbf C,0)\to (\mathbf C,0)$ with identity linear part”, Funct. Anal. Appl., 15:1 (1981), 1–13 | DOI | MR | Zbl