On Integrability of Dynamical Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 78-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classical dynamical system may have smooth integrals of motion and not have analytic ones; i.e., the integrability property depends on the category of smoothness. Recently it has been shown that any quantum dynamical system is completely integrable in the category of Hilbert spaces and, moreover, is unitarily equivalent to a set of classical harmonic oscillators. The same statement holds for classical dynamical systems in the Koopman formulation. Here we construct higher conservation laws in an explicit form for the Schrödinger equation in the multidimensional space under various fairly wide conditions on the potential.
@article{TM_2020_310_a4,
     author = {I. V. Volovich},
     title = {On {Integrability} of {Dynamical} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {78--85},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a4/}
}
TY  - JOUR
AU  - I. V. Volovich
TI  - On Integrability of Dynamical Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 78
EP  - 85
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a4/
LA  - ru
ID  - TM_2020_310_a4
ER  - 
%0 Journal Article
%A I. V. Volovich
%T On Integrability of Dynamical Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 78-85
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a4/
%G ru
%F TM_2020_310_a4
I. V. Volovich. On Integrability of Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 78-85. http://geodesic.mathdoc.fr/item/TM_2020_310_a4/

[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl., 3, VINITI, Moscow, 1985 | MR

[2] S. V. Bolotin and V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017), 671–687 | DOI | MR | Zbl

[3] Deift P.A., “Three lectures on “Fifty years of KdV: An integrable system””, Nonlinear dispersive partial differential equations and inverse scattering, Fields Inst. Commun., 83, Springer, New York, 2019, 3–38 ; arXiv: 1902.10267 [math-ph] | DOI | MR | Zbl

[4] V. G. Drinfel'd and V. V. Sokolov, “Lie algebras and equations of Korteweg–de Vries type”, J. Sov. Math., 30:2 (1985), 1975–2036 | DOI | MR | Zbl

[5] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Sov. Math., Dokl., 20 (1979), 1413–1415 | MR | Zbl

[6] V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics”, Russ. Math. Surv., 38:1 (1983), 1–76 | DOI | MR | MR | Zbl

[7] V. V. Kozlov, “Linear systems with quadratic integral and complete integrability of the Schrödinger equation”, Russ. Math. Surv., 74:5 (2019), 959–961 | DOI | MR | Zbl

[8] V. V. Kozlov and D. V. Treschev, “Polynomial conservation laws in quantum systems”, Theor. Math. Phys., 140:3 (2004), 1283–1298 | DOI | MR | Zbl

[9] V. V. Kozlov and D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | MR | Zbl

[10] Yu. I. Manin, “Algebraic aspects of nonlinear differential equations”, J. Sov. Math., 11:1 (1979), 1–122 | DOI | MR | Zbl

[11] Miller W., \textup {Jr.}, Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46:42 (2013), 423001 ; arXiv: 1309.2694 [math-ph] | DOI | MR | Zbl

[12] Reed M., Simon B., Methods of modern mathematical physics, v. 3, Scattering theory, Acad. Press, San Diego, 1979 | MR | Zbl

[13] V. S. Vladimirov and I. V. Volovich, “Local and nonlocal currents for nonlinear equations”, Theor. Math. Phys., 62:1 (1985), 1–20 | DOI | MR | MR | Zbl

[14] Volovich I.V., “Complete integrability of quantum and classical dynamical systems”, p-Adic Numbers Ultrametric Anal. Appl., 11:4 (2019), 328–334 | DOI | MR | Zbl

[15] Volovich I.V., Remarks on the complete integrability of quantum and classical dynamical systems, E-print, 2019, arXiv: 1911.01335 [math-ph] | MR

[16] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Problem Method, Nauka, Moscow, 1980 | MR | MR | Zbl | Zbl

[17] S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Consultants Bureau, New York, 1984 | MR | MR | Zbl | Zbl