Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a4, author = {I. V. Volovich}, title = {On {Integrability} of {Dynamical} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {78--85}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a4/} }
I. V. Volovich. On Integrability of Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 78-85. http://geodesic.mathdoc.fr/item/TM_2020_310_a4/
[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl., 3, VINITI, Moscow, 1985 | MR
[2] S. V. Bolotin and V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017), 671–687 | DOI | MR | Zbl
[3] Deift P.A., “Three lectures on “Fifty years of KdV: An integrable system””, Nonlinear dispersive partial differential equations and inverse scattering, Fields Inst. Commun., 83, Springer, New York, 2019, 3–38 ; arXiv: 1902.10267 [math-ph] | DOI | MR | Zbl
[4] V. G. Drinfel'd and V. V. Sokolov, “Lie algebras and equations of Korteweg–de Vries type”, J. Sov. Math., 30:2 (1985), 1975–2036 | DOI | MR | Zbl
[5] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Sov. Math., Dokl., 20 (1979), 1413–1415 | MR | Zbl
[6] V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics”, Russ. Math. Surv., 38:1 (1983), 1–76 | DOI | MR | MR | Zbl
[7] V. V. Kozlov, “Linear systems with quadratic integral and complete integrability of the Schrödinger equation”, Russ. Math. Surv., 74:5 (2019), 959–961 | DOI | MR | Zbl
[8] V. V. Kozlov and D. V. Treschev, “Polynomial conservation laws in quantum systems”, Theor. Math. Phys., 140:3 (2004), 1283–1298 | DOI | MR | Zbl
[9] V. V. Kozlov and D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | MR | Zbl
[10] Yu. I. Manin, “Algebraic aspects of nonlinear differential equations”, J. Sov. Math., 11:1 (1979), 1–122 | DOI | MR | Zbl
[11] Miller W., \textup {Jr.}, Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46:42 (2013), 423001 ; arXiv: 1309.2694 [math-ph] | DOI | MR | Zbl
[12] Reed M., Simon B., Methods of modern mathematical physics, v. 3, Scattering theory, Acad. Press, San Diego, 1979 | MR | Zbl
[13] V. S. Vladimirov and I. V. Volovich, “Local and nonlocal currents for nonlinear equations”, Theor. Math. Phys., 62:1 (1985), 1–20 | DOI | MR | MR | Zbl
[14] Volovich I.V., “Complete integrability of quantum and classical dynamical systems”, p-Adic Numbers Ultrametric Anal. Appl., 11:4 (2019), 328–334 | DOI | MR | Zbl
[15] Volovich I.V., Remarks on the complete integrability of quantum and classical dynamical systems, E-print, 2019, arXiv: 1911.01335 [math-ph] | MR
[16] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Problem Method, Nauka, Moscow, 1980 | MR | MR | Zbl | Zbl
[17] S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Consultants Bureau, New York, 1984 | MR | MR | Zbl | Zbl