Dynamics of Perturbations under Diffusion in a Porous Medium
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 309-321.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the dynamics of finite perturbations of a plane phase transition surface in the problem of evaporation of a fluid inside a low-permeability layer of a porous medium. In the case of a nonwettable porous medium, the problem has two stationary solutions, each containing a discontinuity. These discontinuities correspond to plane stationary phase transition surfaces located inside the low-permeability porous layer. One of these surfaces is unstable with respect to long-wavelength perturbations, while the other is stable. We study the evolution of perturbations of the stable plane phase transition surface. It is known that when two phase transition surfaces are located close enough to each other, the dynamics of a weakly nonlinear and weakly unstable wave packet is described by the Kolmogorov–Petrovskii–Piskunov (KPP) diffusion equation. As traveling wave solutions, this equation has heteroclinic solutions with either oscillating or monotonic structure of the front. The boundary value problem in the full statement, which should be considered if the distance between the stable and unstable plane phase transition surfaces is not small, also has similar solutions. We formulate a sufficient condition for the decrease of finite perturbations of the stable plane phase transition surface. This condition depends on their position with respect to the standing wave type and traveling front type solutions of the model equations in the model description when the KPP equation holds.
Keywords: porous medium, evaporation
Mots-clés : diffusion, phase transition surface, perturbation, front.
@article{TM_2020_310_a20,
     author = {V. A. Shargatov and A. T. Il'ichev},
     title = {Dynamics of {Perturbations} under {Diffusion} in a {Porous} {Medium}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {309--321},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a20/}
}
TY  - JOUR
AU  - V. A. Shargatov
AU  - A. T. Il'ichev
TI  - Dynamics of Perturbations under Diffusion in a Porous Medium
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 309
EP  - 321
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a20/
LA  - ru
ID  - TM_2020_310_a20
ER  - 
%0 Journal Article
%A V. A. Shargatov
%A A. T. Il'ichev
%T Dynamics of Perturbations under Diffusion in a Porous Medium
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 309-321
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a20/
%G ru
%F TM_2020_310_a20
V. A. Shargatov; A. T. Il'ichev. Dynamics of Perturbations under Diffusion in a Porous Medium. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 309-321. http://geodesic.mathdoc.fr/item/TM_2020_310_a20/

[1] Ablowitz M.J., Zeppetella A., “Explicit solutions of Fisher's equation for a special wave speed”, Bull. Math. Biol., 41:6 (1979), 835–840 | DOI | MR | Zbl

[2] V. I. Arnold, Ordinary Differential Equations, Nauka, Moscow, 1975 | MR | Zbl

[3] MIT Press, Cambridge, MA, 1973 | MR | Zbl

[4] Bardos C., “A regularity theorem for parabolic equations”, J. Funct. Anal., 7 (1971), 311–322 | DOI | MR | Zbl

[5] Berestycki J., Brunet É., Derrida B., “A new approach to computing the asymptotics of the position of Fisher–KPP fronts”, Europhys. Lett., 122:1 (2018), 10001 | DOI | MR

[6] Bramson M., Convergence of solutions of the Kolmogorov equation to travelling waves, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl

[7] Brevdo L., “Global and absolute instabilities of spatially developing open flows and media with algebraically decaying tails”, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 459 (2003), 1403–1425 | DOI | MR | Zbl

[8] Grant M.A., Bixley P.F., Geothermal reservoir engineering, 2nd ed., Acad. Press, Amsterdam, 2011

[9] A. T. Il'ichev and V. A. Shargatov, “Dynamics of water evaporation fronts”, Comput. Math. Math. Phys., 53:9 (2013), 1350–1370 | DOI | MR | Zbl

[10] A. T. Il'ichev and G. G. Tsypkin, “Instabilities of uniform filtration flows with phase transition”, J. Exp. Theor. Phys., 107:4 (2008), 699–711 | DOI | MR

[11] Il'ichev A.T., Tsypkin G.G., “Catastrophic transition to instability of evaporation front in a porous medium”, Eur. J. Mech. B/Fluids, 27:6 (2008), 665–677 | DOI | MR | Zbl

[12] Il'ichev A.T., Tsypkin G.G., Pritchard D., Richardson C.N., “Instability of the salinity profile during the evaporation of saline groundwater”, J. Fluid Mech., 614 (2008), 87–104 | DOI | MR | Zbl

[13] Jonkhout C.J.H., Traveling wave solutions of reaction–diffusion equations in population dynamics, Bachelor thesis, Math. Inst., Univ. Leiden, Leiden, 2016

[14] N. A. Kudryashov, “Exact solutions of a family of Fisher equations”, Theor. Math. Phys., 94:2 (1993), 211–218 | DOI | MR | Zbl

[15] V. P. Maslov, V. G. Danilov, and K. A. Volosov, Mathematical Modelling of Heat and Mass Transfer Processes: Evolution of Dissipative Structures, Nauka, Moscow, 1987 | MR | MR | Zbl | Zbl

[16] V. G. Danilov, V. P. Maslov, and K. A. Volosov, Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer, Dordrecht, 1995 | MR | MR | Zbl | Zbl

[17] Rayleigh., “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density”, Proc. London Math. Soc., 14 (1883), 170–177 | MR

[18] Saffman P.G., “Exact solutions for the growth of fingers from a flat interface between two fluids in a porous medium or Hele-Shaw cell”, Q. J. Mech. Appl. Math., 12 (1959), 146–150 | DOI | MR | Zbl

[19] Sahli A., Moyne C., Stemmelen D., “Boiling stability in a porous medium heated from below”, Transp. Porous Media, 82:3 (2010), 527–545 | DOI | MR

[20] Shargatov V.A., Il'ichev A.T., Tsypkin G.G., “Dynamics and stability of moving fronts of water evaporation in a porous medium”, Int. J. Heat Mass Transf., 83 (2015), 552–561 | DOI

[21] Straus J.M., Schubert G., “One-dimensional model of vapor-dominated geothermal systems”, J. Geophys. Res., 86:B10 (1981), 9433–9438 | DOI

[22] Shargatov V.A., Gorkunov S.V., Il'ichev A.T., “Dynamics of front-like water evaporation phase transition interfaces”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 223–236 | DOI | MR