Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a2, author = {A. V. Borisov and L. G. Kurakin}, title = {On the {Stability} of a {System} of {Two} {Identical} {Point} {Vortices} and a {Cylinder}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {33--39}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a2/} }
TY - JOUR AU - A. V. Borisov AU - L. G. Kurakin TI - On the Stability of a System of Two Identical Point Vortices and a Cylinder JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 33 EP - 39 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a2/ LA - ru ID - TM_2020_310_a2 ER -
A. V. Borisov; L. G. Kurakin. On the Stability of a System of Two Identical Point Vortices and a Cylinder. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 33-39. http://geodesic.mathdoc.fr/item/TM_2020_310_a2/
[1] Borisov A.V., Mamaev I.S., “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regul. Chaotic Dyn., 8:2 (2003), 163–166 | DOI | MR | Zbl
[2] A. V. Borisov and I. S. Mamaev, “Integrability of the problem of the motion of a cylinder and a vortex in an ideal fluid”, Math. Notes, 75:1 (2004), 19–22 | DOI | MR | Zbl
[3] Borisov A.V., Mamaev I.S., Ramodanov S.M., “Motion of a circular cylinder and $n$ point vortices in a perfect fluid”, Regul. Chaotic Dyn., 8:4 (2003), 449–462 | DOI | MR | Zbl
[4] Borisov A.V., Mamaev I.S., Ramodanov S.M., “Dynamic interaction of point vortices and a two-dimensional cylinder”, J. Math. Phys., 48:6 (2007), 065403 | DOI | MR | Zbl
[5] Havelock T.H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag. Ser. 7, 11:70 (1931), 617–633 | DOI
[6] A. A. Kilin, A. V. Borisov, and I. S. Mamaev, “Dynamics of point vortices inside and outside a circular region”, Fundamental and Applied Problems of Vortex Theory, ed. by A. V. Borisov, I. S. Mamaev, and M. A. Sokolovskii, Inst. Komp'yut. Issled., Moscow, 2003, 414–440 (in Russian) | MR | MR
[7] V. V. Kozlov, General Vortex Theory, Inst. Komp'yut. Issled., Moscow, 2013 (in Russian) | MR
[8] L. G. Kurakin, “Stability, resonances, and instability of regular vortex polygons in a circular domain”, Dokl. Phys., 49:11 (2004), 658–661 | DOI | MR
[9] L. G. Kurakin, “The stability of the steady rotation of a system of three equidistant vortices outside a circle”, J. Appl. Math. Mech., 75:2 (2011), 227–234 | DOI | MR | Zbl
[10] Kurakin L.G., Lysenko I.A., Ostrovskaya I.V., Sokolovskiy M.A., “On stability of the Thomson's vortex $N$-gon in the geostrophic model of the point vortices in two-layer fluid”, J. Nonlinear Sci., 29:4 (2019), 1659–1700 | DOI | MR | Zbl
[11] Kurakin L., Melekhov A., Ostrovskaya I., “A survey of the stability criteria of Thomson's vortex polygons outside a circular domain”, Bol. Soc. Mat. Mex. Ser. 3, 22:2 (2016), 733–744 | DOI | MR | Zbl
[12] L. G. Kurakin and I. V. Ostrovskaya, “Stability of the Thomson vortex polygon with evenly many vortices outside a circular domain”, Sib. Math. J., 51:3 (2010), 463–474 | DOI | MR | Zbl
[13] Kurakin L.G., Ostrovskaya I.V., “Nonlinear stability analysis of a regular vortex pentagon outside a circle”, Regul. Chaotic Dyn., 17:5 (2012), 385–396 | DOI | MR | Zbl
[14] L. G. Kurakin and I. V. Ostrovskaya, “On the stability of Thomson's vortex $N$-gon and a vortex tripole/quadrupole in geostrophic models of Bessel vortices and in a two-layer rotating fluid: A review”, Nelinein. Din., 15:4 (2019), 533–542 | DOI | MR | Zbl
[15] Kurakin L.G., Ostrovskaya I.V., Sokolovskiy M.A., “On the stability of discrete tripole, quadrupole, Thomson' vortex triangle and square in a two-layer/homogeneous rotating fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334 | DOI | MR | Zbl
[16] Kurakin L.G., Yudovich V.I., “The stability of stationary rotation of a regular vortex polygon”, Chaos, 12:3 (2002), 574–595 | DOI | MR | Zbl
[17] A. P. Markeev, Libration Points in Celestial Mechanics and Cosmodynamics, Nauka, Moscow, 1978 (in Russian)
[18] L. M. Milne-Thomson, Theoretical Hydrodynamics, Macmillan Co., London, 1960 | MR | Zbl
[19] Newton P.K., The $N$-vortex problem: Analytical techniques, Appl. Math. Sci., 145, Springer, New York, 2001 | DOI | MR | Zbl
[20] P. G. Saffman, Vortex Dynamics, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[21] Shashikanth B.N., Marsden J.E., Burdick J.W., Kelly S.D., “The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with $N$ point vortices”, Phys. Fluids, 14:3 (2002), 1214–1227 | DOI | MR | Zbl