On the Stability of a System of Two Identical Point Vortices and a Cylinder
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the stability problem for a system of two identical point vortices and a circular cylinder located between them. The circulation around the cylinder is zero. There are two parameters in the problem: the added mass $a$ of the cylinder and $q=R^2/R_0^2$, where $R$ is the radius of the cylinder and $2R_0$ is the distance between vortices. We study the linearization matrix and the quadratic part of the Hamiltonian of the problem, find conditions of orbital stability and instability in nonlinear statement, and point out parameter domains in which linear stability holds and nonlinear analysis is required. The results for $a\to \infty $ are in agreement with the classical results for a fixed cylinder. We show that the mobility of the cylinder leads to the expansion of the stability region.
@article{TM_2020_310_a2,
     author = {A. V. Borisov and L. G. Kurakin},
     title = {On the {Stability} of a {System} of {Two} {Identical} {Point} {Vortices} and a {Cylinder}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a2/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - L. G. Kurakin
TI  - On the Stability of a System of Two Identical Point Vortices and a Cylinder
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 33
EP  - 39
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a2/
LA  - ru
ID  - TM_2020_310_a2
ER  - 
%0 Journal Article
%A A. V. Borisov
%A L. G. Kurakin
%T On the Stability of a System of Two Identical Point Vortices and a Cylinder
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 33-39
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a2/
%G ru
%F TM_2020_310_a2
A. V. Borisov; L. G. Kurakin. On the Stability of a System of Two Identical Point Vortices and a Cylinder. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 33-39. http://geodesic.mathdoc.fr/item/TM_2020_310_a2/

[1] Borisov A.V., Mamaev I.S., “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regul. Chaotic Dyn., 8:2 (2003), 163–166 | DOI | MR | Zbl

[2] A. V. Borisov and I. S. Mamaev, “Integrability of the problem of the motion of a cylinder and a vortex in an ideal fluid”, Math. Notes, 75:1 (2004), 19–22 | DOI | MR | Zbl

[3] Borisov A.V., Mamaev I.S., Ramodanov S.M., “Motion of a circular cylinder and $n$ point vortices in a perfect fluid”, Regul. Chaotic Dyn., 8:4 (2003), 449–462 | DOI | MR | Zbl

[4] Borisov A.V., Mamaev I.S., Ramodanov S.M., “Dynamic interaction of point vortices and a two-dimensional cylinder”, J. Math. Phys., 48:6 (2007), 065403 | DOI | MR | Zbl

[5] Havelock T.H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag. Ser. 7, 11:70 (1931), 617–633 | DOI

[6] A. A. Kilin, A. V. Borisov, and I. S. Mamaev, “Dynamics of point vortices inside and outside a circular region”, Fundamental and Applied Problems of Vortex Theory, ed. by A. V. Borisov, I. S. Mamaev, and M. A. Sokolovskii, Inst. Komp'yut. Issled., Moscow, 2003, 414–440 (in Russian) | MR | MR

[7] V. V. Kozlov, General Vortex Theory, Inst. Komp'yut. Issled., Moscow, 2013 (in Russian) | MR

[8] L. G. Kurakin, “Stability, resonances, and instability of regular vortex polygons in a circular domain”, Dokl. Phys., 49:11 (2004), 658–661 | DOI | MR

[9] L. G. Kurakin, “The stability of the steady rotation of a system of three equidistant vortices outside a circle”, J. Appl. Math. Mech., 75:2 (2011), 227–234 | DOI | MR | Zbl

[10] Kurakin L.G., Lysenko I.A., Ostrovskaya I.V., Sokolovskiy M.A., “On stability of the Thomson's vortex $N$-gon in the geostrophic model of the point vortices in two-layer fluid”, J. Nonlinear Sci., 29:4 (2019), 1659–1700 | DOI | MR | Zbl

[11] Kurakin L., Melekhov A., Ostrovskaya I., “A survey of the stability criteria of Thomson's vortex polygons outside a circular domain”, Bol. Soc. Mat. Mex. Ser. 3, 22:2 (2016), 733–744 | DOI | MR | Zbl

[12] L. G. Kurakin and I. V. Ostrovskaya, “Stability of the Thomson vortex polygon with evenly many vortices outside a circular domain”, Sib. Math. J., 51:3 (2010), 463–474 | DOI | MR | Zbl

[13] Kurakin L.G., Ostrovskaya I.V., “Nonlinear stability analysis of a regular vortex pentagon outside a circle”, Regul. Chaotic Dyn., 17:5 (2012), 385–396 | DOI | MR | Zbl

[14] L. G. Kurakin and I. V. Ostrovskaya, “On the stability of Thomson's vortex $N$-gon and a vortex tripole/quadrupole in geostrophic models of Bessel vortices and in a two-layer rotating fluid: A review”, Nelinein. Din., 15:4 (2019), 533–542 | DOI | MR | Zbl

[15] Kurakin L.G., Ostrovskaya I.V., Sokolovskiy M.A., “On the stability of discrete tripole, quadrupole, Thomson' vortex triangle and square in a two-layer/homogeneous rotating fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334 | DOI | MR | Zbl

[16] Kurakin L.G., Yudovich V.I., “The stability of stationary rotation of a regular vortex polygon”, Chaos, 12:3 (2002), 574–595 | DOI | MR | Zbl

[17] A. P. Markeev, Libration Points in Celestial Mechanics and Cosmodynamics, Nauka, Moscow, 1978 (in Russian)

[18] L. M. Milne-Thomson, Theoretical Hydrodynamics, Macmillan Co., London, 1960 | MR | Zbl

[19] Newton P.K., The $N$-vortex problem: Analytical techniques, Appl. Math. Sci., 145, Springer, New York, 2001 | DOI | MR | Zbl

[20] P. G. Saffman, Vortex Dynamics, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[21] Shashikanth B.N., Marsden J.E., Burdick J.W., Kelly S.D., “The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with $N$ point vortices”, Phys. Fluids, 14:3 (2002), 1214–1227 | DOI | MR | Zbl