$\mu $-Norm of an Operator
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 280-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\mathcal X,\mu )$ be a measure space. For any measurable set $Y\subset \mathcal X$ let $\mathbf 1_Y: \mathcal X\to \mathbb{R} $ be the indicator of $Y$ and let $\pi _Y^{}$ be the orthogonal projection $L^2(\mathcal X)\ni f\mapsto {\pi _Y^{}}_{} f = \mathbf 1_Y f$. For any bounded operator $W$ on $L^2(\mathcal X,\mu )$ we define its $\mu $-norm $\|W\|_\mu = \inf _\chi \sqrt {\sum \mu (Y_j)\|W\pi _Y^{}\|^2}$, where the infimum is taken over all measurable partitions $\chi =\{Y_1,\dots ,Y_J\}$ of $\mathcal X$. We present some properties of the $\mu $-norm and some computations. Our main motivation is the problem of constructing a quantum entropy.
@article{TM_2020_310_a19,
     author = {D. V. Treschev},
     title = {$\mu ${-Norm} of an {Operator}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {280--308},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a19/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - $\mu $-Norm of an Operator
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 280
EP  - 308
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a19/
LA  - ru
ID  - TM_2020_310_a19
ER  - 
%0 Journal Article
%A D. V. Treschev
%T $\mu $-Norm of an Operator
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 280-308
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a19/
%G ru
%F TM_2020_310_a19
D. V. Treschev. $\mu $-Norm of an Operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 280-308. http://geodesic.mathdoc.fr/item/TM_2020_310_a19/

[1] Accardi L., Ohya M., Watanabe N., “Note on quantum dynamical entropies”, Rep. Math. Phys., 38:3 (1996), 457–469 | DOI | MR | Zbl

[2] Accardi L., Ohya M., Watanabe N., “Dynamical entropy through quantum Markov chains”, Open Syst. Inf. Dyn., 4:1 (1997), 71–87 | DOI | MR | Zbl

[3] Alicki R., Fannes M., Quantum dynamical systems, Oxford Univ. Press, Oxford, 2001 | MR | Zbl

[4] Beck C., Graudenz D., “Symbolic dynamics of successive quantum-mechanical measurements”, Phys. Rev. A, 46:10 (1992), 6265–6276 | DOI | MR

[5] Connes A., Narnhofer H., Thirring W., “Dynamical entropy of $C^*$ algebras and von Neumann algebras”, Commun. Math. Phys., 112:4 (1987), 691–719 | DOI | MR | Zbl

[6] Cover T.M., Thomas J.A., Elements of information theory, J. Wiley Sons, New York, 1991 | MR | Zbl

[7] Downarowicz T., Frej B., “Measure-theoretic and topological entropy of operators on function spaces”, Ergodic Theory Dyn. Syst., 25:2 (2005), 455–481 | DOI | MR | Zbl

[8] Dudley R.M., Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[9] Feldman M.B., “A proof of Lusin's theorem”, Amer. Math. Mon., 88 (1981), 191–192 | DOI | MR | Zbl

[10] Frej B., Huczek D., “Doubly stochastic operators with zero entropy”, Ann. Funct. Anal., 10:1 (2019), 144–156 ; arXiv: 1803.07882v1 [math.DS] | DOI | MR | Zbl

[11] Ghys É., Langevin R., Walczak P., “Entropie mesurée et partitions de l'unité”, C. r. Acad. sci. Paris. Sér. I, 303:6 (1986), 251–254 | MR | Zbl

[12] Kollár B., Koniorczyk M., “Entropy rate of message sources driven by quantum walks”, Phys. Rev. A, 89:2 (2014), 022338 | DOI

[13] Makarov I.I., “Dynamical entropy for Markov operators”, J. Dyn. Control Syst., 6:1 (2000), 1–11 | DOI | MR | Zbl

[14] Maurin K., Methods of Hilbert spaces, PWN, Warszawa, 1967 | MR | Zbl

[15] Ohya M., “State change, complexity and fractal in quantum systems”, Quantum communications and measurement, Plenum Press, New York, 1995, 309–320 | DOI | MR | Zbl

[16] Ohya M., “Foundation of entropy, complexity and fractals in quantum systems”, Probability towards 2000: Proc. Symp. (Columbia Univ., 1995), Lect. Notes Stat., 128, Springer, New York, 1998, 263–286 | DOI | MR | Zbl

[17] Pechukas P., “Kolmogorov entropy and “quantum chaos””, J. Phys. Chem., 86:12 (1982), 2239–2243 | DOI

[18] Srinivas M.D., “Quantum generalization of Kolmogorov entropy”, J. Math. Phys., 19:9 (1978), 1952–1961 | DOI | MR | Zbl