Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a19, author = {D. V. Treschev}, title = {$\mu ${-Norm} of an {Operator}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {280--308}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a19/} }
D. V. Treschev. $\mu $-Norm of an Operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 280-308. http://geodesic.mathdoc.fr/item/TM_2020_310_a19/
[1] Accardi L., Ohya M., Watanabe N., “Note on quantum dynamical entropies”, Rep. Math. Phys., 38:3 (1996), 457–469 | DOI | MR | Zbl
[2] Accardi L., Ohya M., Watanabe N., “Dynamical entropy through quantum Markov chains”, Open Syst. Inf. Dyn., 4:1 (1997), 71–87 | DOI | MR | Zbl
[3] Alicki R., Fannes M., Quantum dynamical systems, Oxford Univ. Press, Oxford, 2001 | MR | Zbl
[4] Beck C., Graudenz D., “Symbolic dynamics of successive quantum-mechanical measurements”, Phys. Rev. A, 46:10 (1992), 6265–6276 | DOI | MR
[5] Connes A., Narnhofer H., Thirring W., “Dynamical entropy of $C^*$ algebras and von Neumann algebras”, Commun. Math. Phys., 112:4 (1987), 691–719 | DOI | MR | Zbl
[6] Cover T.M., Thomas J.A., Elements of information theory, J. Wiley Sons, New York, 1991 | MR | Zbl
[7] Downarowicz T., Frej B., “Measure-theoretic and topological entropy of operators on function spaces”, Ergodic Theory Dyn. Syst., 25:2 (2005), 455–481 | DOI | MR | Zbl
[8] Dudley R.M., Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[9] Feldman M.B., “A proof of Lusin's theorem”, Amer. Math. Mon., 88 (1981), 191–192 | DOI | MR | Zbl
[10] Frej B., Huczek D., “Doubly stochastic operators with zero entropy”, Ann. Funct. Anal., 10:1 (2019), 144–156 ; arXiv: 1803.07882v1 [math.DS] | DOI | MR | Zbl
[11] Ghys É., Langevin R., Walczak P., “Entropie mesurée et partitions de l'unité”, C. r. Acad. sci. Paris. Sér. I, 303:6 (1986), 251–254 | MR | Zbl
[12] Kollár B., Koniorczyk M., “Entropy rate of message sources driven by quantum walks”, Phys. Rev. A, 89:2 (2014), 022338 | DOI
[13] Makarov I.I., “Dynamical entropy for Markov operators”, J. Dyn. Control Syst., 6:1 (2000), 1–11 | DOI | MR | Zbl
[14] Maurin K., Methods of Hilbert spaces, PWN, Warszawa, 1967 | MR | Zbl
[15] Ohya M., “State change, complexity and fractal in quantum systems”, Quantum communications and measurement, Plenum Press, New York, 1995, 309–320 | DOI | MR | Zbl
[16] Ohya M., “Foundation of entropy, complexity and fractals in quantum systems”, Probability towards 2000: Proc. Symp. (Columbia Univ., 1995), Lect. Notes Stat., 128, Springer, New York, 1998, 263–286 | DOI | MR | Zbl
[17] Pechukas P., “Kolmogorov entropy and “quantum chaos””, J. Phys. Chem., 86:12 (1982), 2239–2243 | DOI
[18] Srinivas M.D., “Quantum generalization of Kolmogorov entropy”, J. Math. Phys., 19:9 (1978), 1952–1961 | DOI | MR | Zbl