$\mu $-Norm of an Operator
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 280-308

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\mathcal X,\mu )$ be a measure space. For any measurable set $Y\subset \mathcal X$ let $\mathbf 1_Y: \mathcal X\to \mathbb{R} $ be the indicator of $Y$ and let $\pi _Y^{}$ be the orthogonal projection $L^2(\mathcal X)\ni f\mapsto {\pi _Y^{}}_{} f = \mathbf 1_Y f$. For any bounded operator $W$ on $L^2(\mathcal X,\mu )$ we define its $\mu $-norm $\|W\|_\mu = \inf _\chi \sqrt {\sum \mu (Y_j)\|W\pi _Y^{}\|^2}$, where the infimum is taken over all measurable partitions $\chi =\{Y_1,\dots ,Y_J\}$ of $\mathcal X$. We present some properties of the $\mu $-norm and some computations. Our main motivation is the problem of constructing a quantum entropy.
@article{TM_2020_310_a19,
     author = {D. V. Treschev},
     title = {$\mu ${-Norm} of an {Operator}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {280--308},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a19/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - $\mu $-Norm of an Operator
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 280
EP  - 308
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a19/
LA  - ru
ID  - TM_2020_310_a19
ER  - 
%0 Journal Article
%A D. V. Treschev
%T $\mu $-Norm of an Operator
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 280-308
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a19/
%G ru
%F TM_2020_310_a19
D. V. Treschev. $\mu $-Norm of an Operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 280-308. http://geodesic.mathdoc.fr/item/TM_2020_310_a19/