Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a18, author = {Ivan Yu. Polekhin}, title = {Some {Results} on the {Existence} of {Forced} {Oscillations} in {Mechanical} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {267--279}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a18/} }
TY - JOUR AU - Ivan Yu. Polekhin TI - Some Results on the Existence of Forced Oscillations in Mechanical Systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 267 EP - 279 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a18/ LA - ru ID - TM_2020_310_a18 ER -
Ivan Yu. Polekhin. Some Results on the Existence of Forced Oscillations in Mechanical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 267-279. http://geodesic.mathdoc.fr/item/TM_2020_310_a18/
[1] Bernstein S., “Sur certaines équations différentielles ordinaires du second ordre”, C. r. Acad. sci. Paris, 138 (1904), 950–951 | Zbl
[2] S. V. Bolotin and V. V. Kozlov, “Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem”, Izv. Math., 79:5 (2015), 894–901 | DOI | MR | Zbl
[3] Cefalo M., Lanari L., Oriolo G., “Energy-based control of the butterfly robot”, IFAC Proc. Vols., 39:15 (2006), 1–6 | DOI
[4] De Coster C., Habets P., Two-point boundary value problems: Lower and upper solutions, Math. Sci. Eng., 205, Elsevier, Amsterdam, 2006 | MR | Zbl
[5] Dold A., Lectures on algebraic topology, Springer, Berlin, 2012 | MR
[6] Hamel G., “Über erzwungene Schwingungen bei endlichen Amplituden”, Festschrift David Hilbert zu seinem sechzigsten Geburtstag am 23. Januar 1922, Julius Springer, Berlin, 1922, 326–338 | DOI | MR
[7] Lynch K.M., Shiroma N., Arai H., Tanie K., “The roles of shape and motion in dynamic manipulation: The butterfly example”, Proc. 1998 IEEE Int. Conf. on Robotics and Automation (Cat. no. 98CH36146), v. 3, IEEE, 1998, 1958–1963 | DOI
[8] Mawhin J., “Seventy-five years of global analysis around the forced pendulum equation”, Equadiff 9: Proc. Conf. on Differential Equations and Their Applications (Brno, 1997), Masaryk Univ., Brno, 1998, 115–145
[9] I. Yu. Polekhin, “Examples of topological approach to the problem of inverted pendulum with moving pivot point”, Nelinein. Din., 10:4 (2014), 465–472 | DOI | MR | Zbl
[10] Polekhin I., Periodic and falling-free motion of an inverted spherical pendulum with a moving pivot point, E-print, 2014, arXiv: 1411.1585 [math.DS] | Zbl
[11] Polekhin I., “Forced oscillations of a massive point on a compact surface with a boundary”, Nonlinear Anal. Theory Methods Appl., 128 (2015), 100–105 | DOI | MR | Zbl
[12] Polekhin I., “On forced oscillations in groups of interacting nonlinear systems”, Nonlinear Anal. Theory Methods Appl., 135 (2016), 120–128 | DOI | MR | Zbl
[13] Polekhin I., “On topological obstructions to global stabilization of an inverted pendulum”, Syst. Control Lett., 113 (2018), 31–35 | DOI | MR | Zbl
[14] Srzednicki R., “Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations”, Nonlinear Anal. Theory Methods Appl., 22:6 (1994), 707–737 | DOI | MR | Zbl
[15] Srzednicki R., “On periodic solutions in the Whitney's inverted pendulum problem”, Discrete Contin. Dyn. Syst. Ser. S, 12:7 (2019), 2127–2141 | MR | Zbl
[16] Srzednicki R., Wójcik K., Zgliczyński P., “Fixed point results based on the Ważewski method”, Handbook of topological fixed point theory, Springer, Berlin, 2005, 905–943 | DOI | MR
[17] Surov M., Shiriaev A., Freidovich L., Gusev S., Paramonov L., “Case study in non-prehensile manipulation: Planning and orbital stabilization of one-directional rollings for the “Butterfly” robot”, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA) (Seattle, WA, 2015), IEEE, 2015, 1484–1489
[18] Wazewski T., “Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires”, Ann. Soc. Polon. math., 20 (1948), 279–313 | MR | Zbl