Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a17, author = {P. I. Plotnikov and J. Soko{\l}owski}, title = {Dynamics of a {Crankshaft} {Mechanism} under the {Pressure} of a {Viscous} {Gas}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {237--266}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a17/} }
TY - JOUR AU - P. I. Plotnikov AU - J. Sokołowski TI - Dynamics of a Crankshaft Mechanism under the Pressure of a Viscous Gas JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 237 EP - 266 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a17/ LA - ru ID - TM_2020_310_a17 ER -
P. I. Plotnikov; J. Sokołowski. Dynamics of a Crankshaft Mechanism under the Pressure of a Viscous Gas. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 237-266. http://geodesic.mathdoc.fr/item/TM_2020_310_a17/
[1] Feireisl E., Dynamics of viscous compressible fluids, Oxford Lect. Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[2] Feireisl E., Mácha V., Nečasová S., Tucsnak M., “Analysis of the adiabatic piston problem via methods of continuum mechanics”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 35:5 (2018), 1377–1408 | DOI | MR | Zbl
[3] Lions P.-L., Mathematical topics in fluid mechanics, v. 2, Oxford Lect. Ser. Math. Appl., 10, Compressible models, Clarendon, Oxford, 1998 | MR | Zbl
[4] Novotný A., Straškraba I., Introduction to the mathematical theory of compressible flow, Oxford Lect. Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[5] Guidorzi M., Padula M., Plotnikov P.I., “Hopf solutions to a fluid-elastic interaction model”, Math. Models Methods Appl. Sci., 18:2 (2008), 215–269 | DOI | MR | Zbl
[6] A. V. Kazhikhov and V. V. Shelukhin, “Unique global solution with respect to time of initial–boundary value problems for one-dimensional equations of a viscous gas”, J. Appl. Math. Mech., 41:2 (1977), 273–282 | DOI | MR
[7] Maity D., Takahashi T., Tucsnak M., “Analysis of a system modelling the motion of a piston in a viscous gas”, J. Math. Fluid Mech., 19:3 (2017), 551–579 | DOI | MR | Zbl
[8] Plotnikov P., Sokołowski J., Compressible Navier–Stokes equations: Theory and shape optimization, Springer, Basel, 2012 | MR | Zbl
[9] Plotnikov P.I., Sokołowski J., “Boundary control of the motion of a heavy piston in viscous gas”, SIAM J. Control Optim., 57:5 (2019), 3166–3192 | DOI | MR | Zbl
[10] V. V. Shelukhin, “Motion with contact discontinuity in viscous heat conducting gas”, Dinamika Sploshnoi Sredy, 57 (1982), 131–152 | MR | Zbl
[11] V. A. Vaigant, “Nonhomogeneous boundary value problems for equations of viscous heat-conducting gas”, Dinamika Sploshnoi Sredy, 97 (1990), 3–21 | MR