Dynamics of a Crankshaft Mechanism under the Pressure of a Viscous Gas
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 237-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an initial–boundary value problem with free boundary for one-dimensional equations of viscous gas dynamics. The problem models the motion of a crankshaft mechanism under gas pressure. It is assumed that the gas fills a cylinder, which is modeled by the interval $[0,1]$. A variable point $a(t)\in [0,1]$ models a piston moving inside the cylinder. The piston is assumed to be connected to a planar three-link crankshaft mechanism. We also assume that a velocity distribution on the boundary of the cylinder and a density distribution on gas inflow segments are given. The gas motion is described by the one-dimensional Navier–Stokes equations of viscous compressible fluid dynamics. It is required to determine the joint motion of the gas and crankshaft mechanism. We prove that this problem has a weak renormalized solution.
Mots-clés : viscous gas
Keywords: inhomogeneous boundary conditions, weak solutions, crankshaft mechanism.
@article{TM_2020_310_a17,
     author = {P. I. Plotnikov and J. Soko{\l}owski},
     title = {Dynamics of a {Crankshaft} {Mechanism} under the {Pressure} of a {Viscous} {Gas}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {237--266},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a17/}
}
TY  - JOUR
AU  - P. I. Plotnikov
AU  - J. Sokołowski
TI  - Dynamics of a Crankshaft Mechanism under the Pressure of a Viscous Gas
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 237
EP  - 266
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a17/
LA  - ru
ID  - TM_2020_310_a17
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%A J. Sokołowski
%T Dynamics of a Crankshaft Mechanism under the Pressure of a Viscous Gas
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 237-266
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a17/
%G ru
%F TM_2020_310_a17
P. I. Plotnikov; J. Sokołowski. Dynamics of a Crankshaft Mechanism under the Pressure of a Viscous Gas. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 237-266. http://geodesic.mathdoc.fr/item/TM_2020_310_a17/

[1] Feireisl E., Dynamics of viscous compressible fluids, Oxford Lect. Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[2] Feireisl E., Mácha V., Nečasová S., Tucsnak M., “Analysis of the adiabatic piston problem via methods of continuum mechanics”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 35:5 (2018), 1377–1408 | DOI | MR | Zbl

[3] Lions P.-L., Mathematical topics in fluid mechanics, v. 2, Oxford Lect. Ser. Math. Appl., 10, Compressible models, Clarendon, Oxford, 1998 | MR | Zbl

[4] Novotný A., Straškraba I., Introduction to the mathematical theory of compressible flow, Oxford Lect. Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[5] Guidorzi M., Padula M., Plotnikov P.I., “Hopf solutions to a fluid-elastic interaction model”, Math. Models Methods Appl. Sci., 18:2 (2008), 215–269 | DOI | MR | Zbl

[6] A. V. Kazhikhov and V. V. Shelukhin, “Unique global solution with respect to time of initial–boundary value problems for one-dimensional equations of a viscous gas”, J. Appl. Math. Mech., 41:2 (1977), 273–282 | DOI | MR

[7] Maity D., Takahashi T., Tucsnak M., “Analysis of a system modelling the motion of a piston in a viscous gas”, J. Math. Fluid Mech., 19:3 (2017), 551–579 | DOI | MR | Zbl

[8] Plotnikov P., Sokołowski J., Compressible Navier–Stokes equations: Theory and shape optimization, Springer, Basel, 2012 | MR | Zbl

[9] Plotnikov P.I., Sokołowski J., “Boundary control of the motion of a heavy piston in viscous gas”, SIAM J. Control Optim., 57:5 (2019), 3166–3192 | DOI | MR | Zbl

[10] V. V. Shelukhin, “Motion with contact discontinuity in viscous heat conducting gas”, Dinamika Sploshnoi Sredy, 57 (1982), 131–152 | MR | Zbl

[11] V. A. Vaigant, “Nonhomogeneous boundary value problems for equations of viscous heat-conducting gas”, Dinamika Sploshnoi Sredy, 97 (1990), 3–21 | MR