Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a16, author = {A. I. Neishtadt and A. V. Artemyev}, title = {Hamiltonian in {Guiding} {Center} {Theory:} {A} {Symplectic} {Structure} {Approach}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {230--236}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a16/} }
TY - JOUR AU - A. I. Neishtadt AU - A. V. Artemyev TI - Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 230 EP - 236 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a16/ LA - ru ID - TM_2020_310_a16 ER -
A. I. Neishtadt; A. V. Artemyev. Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 230-236. http://geodesic.mathdoc.fr/item/TM_2020_310_a16/
[1] H. Alfvén and C.-G. Fälthammar, Cosmical Electrodynamics: Fundamental Principles, 2nd ed., Clarendon Press, Oxford, 1963 | MR | Zbl
[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, 3rd ed., Nauka, Moscow, 1989 | DOI | MR | MR | Zbl
[3] Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts Math., 60, Springer, New York, 1989 | DOI | MR | MR | Zbl
[4] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, URSS, Moscow, 2002 | MR | MR | MR | Zbl
[5] Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | MR | MR | Zbl
[6] Birn J., Thomsen M.F., Hesse M., “Electron acceleration in the dynamic magnetotail: Test particle orbits in three-dimensional magnetohydrodynamic simulation fields”, Phys. Plasmas, 11:5 (2004), 1825–1833 | DOI | MR
[7] Boozer A.H., “Guiding center drift equations”, Phys. Fluids, 23:5 (1980), 904–908 | DOI | MR | Zbl
[8] Brizard A.J., Hahm T.S., “Foundations of nonlinear gyrokinetic theory”, Rev. Mod. Phys., 79:2 (2007), 421–468 | DOI | MR | Zbl
[9] Cary J.R., Brizard A.J., “Hamiltonian theory of guiding-center motion”, Rev. Mod. Phys., 81:2 (2009), 693–738 | DOI | MR | Zbl
[10] Chan A.A., “Noncanonical Hamiltonian methods for particle motion in magnetospheric hydromagnetic waves”, J. Geophys. Res., 103:A9 (1998), 20501–20513 | DOI
[11] Gardner C.S., “Adiabatic invariants of periodic classical systems”, Phys. Rev., 115:4 (1959), 791–794 | DOI | MR
[12] Grebogi C., Kaufman A.N., Littlejohn R.G., “Hamiltonian theory of ponderomotive effects of an electromagnetic wave in a nonuniform magnetic field”, Phys. Rev. Lett., 43:22 (1979), 1668–1671 | DOI | MR
[13] L. D. Landau and E. M. Lifshitz, Theoretical Physics, v. 1, Mechanics, Nauka, Moscow, 1973 | MR
[14] Course of Theoretical Physics, v. 1, Mechanics, Pergamon, Oxford, 1988 | MR
[15] Littlejohn R.G., “A guiding center Hamiltonian: A new approach”, J. Math. Phys., 20:12 (1979), 2445–2458 | DOI | MR | Zbl
[16] Littlejohn R.G., “Variational principles of guiding centre motion”, J. Plasma Phys., 29:1 (1983), 111–125 | DOI
[17] T. G. Northrop, The Adiabatic Motion of Charged Particles, Interscience, New York, 1963 | MR | Zbl
[18] S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, MTsNMO, Moscow, 2005 | DOI | MR | Zbl
[19] Modern Geometric Structures and Fields, Grad. Stud. Math., 71, Am. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl
[20] D. V. Sivukhin, “Motion of charged particles in electromagnetic fields in the drift approximation”, Rev. Plasma Phys., 1 (1965), 1–104
[21] Stern D.P., “Euler potentials”, Amer. J. Phys., 38:4 (1970), 494–501 | DOI
[22] Tao X., Chan A.A., Brizard A.J., “Hamiltonian theory of adiabatic motion of relativistic charged particles”, Phys. Plasmas, 14:9 (2007), 092107 | DOI
[23] Ukhorskiy A.Y., Sitnov M.I., Millan R.M., Kress B.T., “The role of drift orbit bifurcations in energization and loss of electrons in the outer radiation belt”, J. Geophys. Res., 116:A9 (2011), A09208