Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 230-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The guiding center approximation represents a very powerful tool for analyzing and modeling a charged particle motion in strong magnetic fields. This approximation is based on the conservation of an adiabatic invariant, the magnetic moment. Hamiltonian equations for the guiding center motion are traditionally introduced using a non-canonical symplectic structure. Under such an approach one has to apply the non-canonical Hamiltonian perturbation theory in order to calculate the magnetic moment corrections. In this study we present an alternative approach with canonical Hamiltonian equations for the guiding center motion in time-dependent electromagnetic fields. We show that the derived Hamiltonian decouples three types of motion (gyrorotation, field-aligned motion, and cross-field drifts), and each type is described by a pair of conjugate variables. This form of Hamiltonian and symplectic structure allows easy introduction of adiabatic invariants and can be useful for the analysis of various plasma systems.
@article{TM_2020_310_a16,
     author = {A. I. Neishtadt and A. V. Artemyev},
     title = {Hamiltonian in {Guiding} {Center} {Theory:} {A} {Symplectic} {Structure} {Approach}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {230--236},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a16/}
}
TY  - JOUR
AU  - A. I. Neishtadt
AU  - A. V. Artemyev
TI  - Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 230
EP  - 236
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a16/
LA  - ru
ID  - TM_2020_310_a16
ER  - 
%0 Journal Article
%A A. I. Neishtadt
%A A. V. Artemyev
%T Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 230-236
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a16/
%G ru
%F TM_2020_310_a16
A. I. Neishtadt; A. V. Artemyev. Hamiltonian in Guiding Center Theory: A Symplectic Structure Approach. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 230-236. http://geodesic.mathdoc.fr/item/TM_2020_310_a16/

[1] H. Alfvén and C.-G. Fälthammar, Cosmical Electrodynamics: Fundamental Principles, 2nd ed., Clarendon Press, Oxford, 1963 | MR | Zbl

[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, 3rd ed., Nauka, Moscow, 1989 | DOI | MR | MR | Zbl

[3] Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts Math., 60, Springer, New York, 1989 | DOI | MR | MR | Zbl

[4] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, URSS, Moscow, 2002 | MR | MR | MR | Zbl

[5] Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | MR | MR | Zbl

[6] Birn J., Thomsen M.F., Hesse M., “Electron acceleration in the dynamic magnetotail: Test particle orbits in three-dimensional magnetohydrodynamic simulation fields”, Phys. Plasmas, 11:5 (2004), 1825–1833 | DOI | MR

[7] Boozer A.H., “Guiding center drift equations”, Phys. Fluids, 23:5 (1980), 904–908 | DOI | MR | Zbl

[8] Brizard A.J., Hahm T.S., “Foundations of nonlinear gyrokinetic theory”, Rev. Mod. Phys., 79:2 (2007), 421–468 | DOI | MR | Zbl

[9] Cary J.R., Brizard A.J., “Hamiltonian theory of guiding-center motion”, Rev. Mod. Phys., 81:2 (2009), 693–738 | DOI | MR | Zbl

[10] Chan A.A., “Noncanonical Hamiltonian methods for particle motion in magnetospheric hydromagnetic waves”, J. Geophys. Res., 103:A9 (1998), 20501–20513 | DOI

[11] Gardner C.S., “Adiabatic invariants of periodic classical systems”, Phys. Rev., 115:4 (1959), 791–794 | DOI | MR

[12] Grebogi C., Kaufman A.N., Littlejohn R.G., “Hamiltonian theory of ponderomotive effects of an electromagnetic wave in a nonuniform magnetic field”, Phys. Rev. Lett., 43:22 (1979), 1668–1671 | DOI | MR

[13] L. D. Landau and E. M. Lifshitz, Theoretical Physics, v. 1, Mechanics, Nauka, Moscow, 1973 | MR

[14] Course of Theoretical Physics, v. 1, Mechanics, Pergamon, Oxford, 1988 | MR

[15] Littlejohn R.G., “A guiding center Hamiltonian: A new approach”, J. Math. Phys., 20:12 (1979), 2445–2458 | DOI | MR | Zbl

[16] Littlejohn R.G., “Variational principles of guiding centre motion”, J. Plasma Phys., 29:1 (1983), 111–125 | DOI

[17] T. G. Northrop, The Adiabatic Motion of Charged Particles, Interscience, New York, 1963 | MR | Zbl

[18] S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, MTsNMO, Moscow, 2005 | DOI | MR | Zbl

[19] Modern Geometric Structures and Fields, Grad. Stud. Math., 71, Am. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl

[20] D. V. Sivukhin, “Motion of charged particles in electromagnetic fields in the drift approximation”, Rev. Plasma Phys., 1 (1965), 1–104

[21] Stern D.P., “Euler potentials”, Amer. J. Phys., 38:4 (1970), 494–501 | DOI

[22] Tao X., Chan A.A., Brizard A.J., “Hamiltonian theory of adiabatic motion of relativistic charged particles”, Phys. Plasmas, 14:9 (2007), 092107 | DOI

[23] Ukhorskiy A.Y., Sitnov M.I., Millan R.M., Kress B.T., “The role of drift orbit bifurcations in energization and loss of electrons in the outer radiation belt”, J. Geophys. Res., 116:A9 (2011), A09208