Investigation of Rotating Detonation Waves in an Annular Gap
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 199-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate and numerically analyze the problem of formation of rotating three-dimensional detonation waves in an annular gap between parallel plates. It is assumed that a homogeneous combustible mixture contained in a reservoir with given stagnation parameters flows into the gap through elementary nozzles that uniformly fill the external ring bounding the gap. The gas dynamic parameters of the mixture are defined as functions of the stagnation parameters and the static pressure in the gap. In the absence of ignition, the mixture flows out into a half-closed axially symmetric volume bounded on one side by a flat disk (extension of one of the plates forming the gap). On the opposite side of the volume, a nozzle is attached, through which the mixture flows out into air at given pressure and temperature. Detonation is initiated by a directional explosion, i.e., by energy supply to the flow of the combustible mixture in a narrow area where it flows into the gap. We work out a method that allows the simultaneous initiation of several detonation waves rotating in a given direction. For the considered geometric parameters of the flow region, the formation of one to four rotating detonation waves is observed. We analyze the stability of the process under the variation of the stagnation parameters of the mixture, and obtain data on the corresponding reactive force due to the jet of detonation products flowing out into air. We present the results of calculations for a propane–air mixture that are obtained within the single-stage combustion kinetics by a numerical method based on S. K. Godunov's scheme and implemented in the original software system on the Lomonosov supercomputer at Moscow State University.
Keywords: rotating detonation, single-stage kinetics, numerical method, software system, supercomputer.
Mots-clés : annular gap
@article{TM_2020_310_a14,
     author = {V. A. Levin and I. S. Manuylovich and V. V. Markov},
     title = {Investigation of {Rotating} {Detonation} {Waves} in an {Annular} {Gap}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {199--216},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a14/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - I. S. Manuylovich
AU  - V. V. Markov
TI  - Investigation of Rotating Detonation Waves in an Annular Gap
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 199
EP  - 216
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a14/
LA  - ru
ID  - TM_2020_310_a14
ER  - 
%0 Journal Article
%A V. A. Levin
%A I. S. Manuylovich
%A V. V. Markov
%T Investigation of Rotating Detonation Waves in an Annular Gap
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 199-216
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a14/
%G ru
%F TM_2020_310_a14
V. A. Levin; I. S. Manuylovich; V. V. Markov. Investigation of Rotating Detonation Waves in an Annular Gap. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 199-216. http://geodesic.mathdoc.fr/item/TM_2020_310_a14/

[1] F. A. Bykovskii and S. A. Zhdan, “Current status of research of continuous detonation in fuel–air mixtures (review)”, Combust. Explos. Shock Waves, 51 (2015), 21–35 | DOI

[2] V. K. Chvanov, V. A. Levin, P. S. Levochkin, I. S. Manuilovich, V. V. Markov, and L. E. Sternin, “Three-dimensional calculation of gas-dynamic parameters of combustion products in an annular chamber of a liquid-propellant rocket engine with rotating detonation”, Tr. NPO Energomash Im. Akad. V. P. Glushko, 32 (2015), 23–35

[3] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics, Nauka, Moscow, 1976 (in Russian) | MR

[4] Korobeinikov V.P., Levin V.A., Markov V.V., Chernyi G.G., “Propagation of blast waves in a combustible gas”, Astronaut. acta, 17:5–6 (1972), 529–537

[5] Korobeinikov V.P., Markov V.V., “On propagation of combustion and detonation”, Arch. procesów spalania, 8:1 (1977), 101–118 | MR

[6] V. A. Levin, I. S. Manuĭlovich, and V. V. Markov, “New effects of stratified gas detonation”, Dokl. Phys., 55:1 (2010), 28–32 | DOI | MR

[7] V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Distinctive features of galloping detonation in a supersonic combustible-mixture flow under an inert gas layer”, Fluid Dyn., 45 (2010), 827–834 | DOI | MR | Zbl

[8] V. A. Levin, I. S. Manuĭlovich, and V. V. Markov, “Formation of detonation in rotating channels”, Dokl. Phys., 55:6 (2010), 308–311 | DOI | Zbl

[9] V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Detonation initiation by rotation of an elliptic cylinder inside a circular cylinder and deformation of the channel walls”, J. Appl. Mech. Tech. Phys., 51 (2010), 463–470 | DOI | Zbl

[10] V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Mathematical modeling of shock-wave processes under gas–solid boundary interaction”, Proc. Steklov Inst. Math., 281 (2013), 37–48 | DOI | MR | Zbl

[11] V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Numerical simulation of spinning detonation in circular section channels”, Comput. Math. Math. Phys., 56 (2016), 1102–1117 | DOI | MR | Zbl

[12] V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Rotating detonation wave in an annular gap”, Proc. Steklov Inst. Math., 300 (2018), 126–136 | DOI | MR | Zbl

[13] V. A. Levin and V. V. Markov, “Initiation of detonation by concentrated release of energy”, Combust. Explos. Shock Waves, 11 (1975), 529–536 | DOI

[14] V. A. Levin, V. V. Markov, and S. F. Osinkin, “Simulation of detonation initiation in a combustible mixture of gases by an electric discharge”, Sov. J. Chem. Phys., 3 (1985), 917–920

[15] V. A. Levin, V. V. Markov, and S. F. Osinkin, “Direct initiation of detonation in a hydrogen–oxygen mixture diluted with nitrogen”, Fluid Dyn., 27 (1992), 873–876 | DOI | MR

[16] V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of detonation in hydrogen–air mixture by explosion of a spherical TNT charge”, Combust. Explos. Shock Waves, 31 (1995), 207–210 | DOI

[17] V. A. Levin, V. V. Markov, and S. F. Osinkin, “Detonation wave reinitiation using a disintegrating shell”, Phys. Dokl., 42:1 (1997), 25–27

[18] V. A. Levin, V. V. Markov, and S. F. Osinkin, “The effect of air interlayer on the shock initiation of detonation in a hydrogen–air mixture”, Proc. Steklov Inst. Math., 223 (1998), 131–138 | Zbl

[19] V. A. Levin, V. V. Markov, S. F. Osinkin, and T. A. Zhuravskaya, “Determination of critical conditions for detonation initiation in a finite volume by a converging shock wave”, Combust. Explos. Shock Waves, 38 (2002), 693–699 | DOI

[20] V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, “Direct detonation initiation in a hydrogen–air mixture by a converging shock wave”, Khim. Fiz., 20:5 (2001), 26–30

[21] V. V. Markov, “Numerical simulation of the formation of a multifrontal detonation-wave structure”, Sov. Phys., Dokl., 26 (1981), 503–505 | Zbl

[22] V. V. Mitrofanov and R. I. Soloukhin, “The diffraction of multifront detonation waves”, Sov. Phys., Dokl., 9 (1965), 1055–1058

[23] L. I. Sedov, V. P. Korobeĭnikov, and V. V. Markov, “The theory of propagation of blast waves”, Proc. Steklov Inst. Math., 175 (1988), 187–228 | MR | Zbl

[24] R. I. Soloukhin, “Structure of a multifront detonation wave in a gas”, Combust. Explos. Shock Waves, 1:2 (1965), 23–29 | DOI

[25] Thermodynamic Properties of Individual Substances, ed. by L. V. Gurvich and I. V. Veyts, Nauka, Moscow, 1978

[26] v. 1, Part 2, Hemisphere, New York, 1989

[27] Vl. Voevodin, S. Zhumatii, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, and Vad. Voevodin, “Practice of the ‘Lomonosov’ Supercomputer”, Otkrytye Sistemy, SUBD, 2012, no. 7, 36–39

[28] Westbrook C.K., Dryer F.L., “Chemical kinetic modeling of hydrocarbon combustion”, Prog. Energy Combust. Sci., 10:1 (1984), 1–57 | DOI | MR

[29] T. A. Zhuravskaya, V. A. Levin, V. V. Markov, and S. F. Osinkin, “Effect of the decomposing shell on the formation of detonation in a bounded volume by a converging shock wave”, Khim. Fiz., 22:8 (2003), 34–37