Discrete Geodesic Flows on Stiefel Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 176-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds $V_{n,r}$. In particular, for $n=3$ and $r=2$, after the identification $V_{3,2}\cong \mathrm {SO}(3)$, we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator $I=(1,1,2)$. In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on $V_{n,r}$.
Keywords: discrete geodesic flows, noncommutative integrability, canonical transformations
Mots-clés : quadratic matrix equations, billiards.
@article{TM_2020_310_a12,
     author = {Bo\v{z}idar Jovanovi\'c and Yuri N. Fedorov},
     title = {Discrete {Geodesic} {Flows} on {Stiefel} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {176--188},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a12/}
}
TY  - JOUR
AU  - Božidar Jovanović
AU  - Yuri N. Fedorov
TI  - Discrete Geodesic Flows on Stiefel Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 176
EP  - 188
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a12/
LA  - ru
ID  - TM_2020_310_a12
ER  - 
%0 Journal Article
%A Božidar Jovanović
%A Yuri N. Fedorov
%T Discrete Geodesic Flows on Stiefel Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 176-188
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a12/
%G ru
%F TM_2020_310_a12
Božidar Jovanović; Yuri N. Fedorov. Discrete Geodesic Flows on Stiefel Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 176-188. http://geodesic.mathdoc.fr/item/TM_2020_310_a12/

[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, URSS, Moscow, 2002 | MR | Zbl

[2] Mathematical Aspects of Classical and Celestial Mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | Zbl

[3] Bialy M., Mironov A.E., Tabachnikov S., “Wire billiards, the first steps”, Adv. Math., 368 (2020), 107154 ; arXiv: 1905.13617 [math.DS] | DOI | MR | Zbl

[4] Bloch A.M., Brockett R.W., Crouch P.E., “Double bracket equations and geodesic flows on symmetric spaces”, Commun. Math. Phys., 187:2 (1997), 357–373 | DOI | MR | Zbl

[5] Bloch A.M., Crouch P.E., Sanyal A.K., “A variational problem on Stiefel manifolds”, Nonlinearity, 19:10 (2006), 2247–2276 ; arXiv: math/0609038 [math.OC] | DOI | MR | Zbl

[6] Bobenko A.I., Lorbeer B., Suris Yu.B., “Integrable discretizations of the Euler top”, J. Math. Phys., 39:12 (1998), 6668–6683 | DOI | MR | Zbl

[7] A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR, Izv., 38:1 (1992), 69–90 | DOI | MR

[8] Bolsinov A.V., Jovanović B., “Magnetic geodesic flows on coadjoint orbits”, J. Phys. A: Math. Gen., 39 (2006), L247–L252 | DOI | MR | Zbl

[9] Dragović V., Radnović M., Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser, Basel, 2011 | DOI | MR | Zbl

[10] Fedorov Yu.N., “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group $SO(3)$”, J. Nonlinear Math. Phys., 12, Suppl. 2 (2005), 77–94 ; arXiv: nlin/0505045 [nlin.SI] | DOI | MR | Zbl

[11] Fedorov Yu.N., Jovanović B., “Geodesic flows and Neumann systems on Stiefel varieties: Geometry and integrability”, Math. Z., 270:3–4 (2012), 659–698 ; arXiv: 1011.1835 [nlin.SI] | DOI | MR | Zbl

[12] Fedorov Yu.N., Jovanović B., Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems, E-print, 2015, arXiv: 1503.07053 [nlin.SI]

[13] Fedorov Yu.N., Kozlov V.V., “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical systems in classical mechanics, AMS Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 141–171 | MR

[14] Féjoz J., Knauf A., Montgomery R., “Lagrangian relations and linear point billiards”, Nonlinearity, 30:4 (2017), 1326–1355 | DOI | MR | Zbl

[15] Hirota R., Kimura K., “Discretization of the Euler top”, J. Phys. Soc. Japan, 69:3 (2000), 627–630 | DOI | MR | Zbl

[16] Jensen G.R., “Einstein metrics on principal fibre bundles”, J. Diff. Geom., 8:4 (1973), 599–614 | DOI | MR | Zbl

[17] Jovanović B., “Symmetries and integrability”, Publ. Inst. Math. Nouv. Sér., 84:98 (2008), 1–36 ; arXiv: 0812.4398 [math.SG] | DOI | MR | Zbl

[18] Jovanović B., “Billiards on constant curvature spaces and generating functions for systems with constraints”, Theor. Appl. Mech., 44:1 (2017), 103–114 | DOI

[19] Jovanović B., Jovanović V., “Virtual billiards in pseudo-Euclidean spaces: Discrete Hamiltonian and contact integrability”, Discrete Contin. Dyn. Syst. A, 37:10 (2017), 5163–5190 ; arXiv: 1510.04037 [nlin.SI] | DOI | MR | Zbl

[20] Jovanović B., Jovanović V., “Heisenberg model in pseudo-Euclidean spaces. II”, Regul. Chaotic Dyn., 23:4 (2018), 418–437 ; arXiv: 1808.10783 [nlin.SI] | DOI | MR | Zbl

[21] Kimura K., “A Lax pair of the discrete Euler top”, J. Phys. A: Math. Theor., 50:24 (2017), 245203 | DOI | MR | Zbl

[22] V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Mosk. Gos. Univ., Moscow, 1991 | DOI | MR | MR | Zbl | Zbl

[23] Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Transl. Math. Monogr., 89, Am. Math. Soc., Providence, RI, 1991 | DOI | MR | MR | Zbl | Zbl

[24] Lancaster P., Rodman L., Algebraic Riccati equations, Clarendon Press, Oxford, 1995 | MR | Zbl

[25] S. V. Manakov, “Note on the integration of Euler's equations of the dynamics of an $n$-dimensional rigid body”, Funct. Anal. Appl., 10:4 (1976), 328–329 | DOI | MR | Zbl

[26] A. S. Mishchenko, “Integration of geodesic flows on symmetric spaces”, Math. Notes, 31:2 (1982), 132–134 | DOI | MR | Zbl

[27] A. S. Mishchenko and A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl

[28] Moser J., Veselov A.P., “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Commun. Math. Phys., 139:2 (1991), 217–243 | DOI | MR | Zbl

[29] Nguyen Tien Zung., “Torus actions and integrable systems”, Topological methods in the theory of integrable systems, ed. by A.V. Bolsinov, A.T. Fomenko, A.A. Oshemkov, Cambridge Sci. Publ., Cambridge, 2006, 289–328 ; arXiv: math.DS/0407455 [math.DS] | MR | Zbl

[30] Petrera M., Suris Yu.B., “On the Hamiltonian structure of Hirota–Kimura discretization of the Euler top”, Math. Nachr., 283:11 (2010), 1654–1663 ; arXiv: 0707.4382 [math-ph] | DOI | MR | Zbl

[31] Potter J.E., “Matrix quadratic solutions”, SIAM J. Appl. Math., 14:3 (1966), 496–501 | DOI | MR | Zbl

[32] Ragnisco O., “A discrete Neumann system”, Phys. Lett. A, 167:2 (1992), 165–171 | DOI | MR

[33] Suris Yu.B., The problem of integrable discretization: Hamiltonian approach, Prog. Math., 219, Birkhäuser, Basel, 2003 | MR | Zbl

[34] Tsiganov A.A., “On discretization of the Euler top”, Regul. Chaotic Dyn., 23:6 (2018), 785–796 ; arXiv: 1803.06511 [nlin.SI] | DOI | MR | Zbl

[35] A. P. Veselov, “Integrable discrete-time systems and difference operators”, Funct. Anal. Appl., 22:2 (1988), 83–93 | DOI | MR | MR | Zbl

[36] A. P. Veselov, “Integrable maps”, Russ. Math. Surv., 46:5 (1991), 1–51 | DOI | MR | Zbl