Discrete Geodesic Flows on Stiefel Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 176-188

Voir la notice de l'article provenant de la source Math-Net.Ru

We study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds $V_{n,r}$. In particular, for $n=3$ and $r=2$, after the identification $V_{3,2}\cong \mathrm {SO}(3)$, we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator $I=(1,1,2)$. In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on $V_{n,r}$.
Keywords: discrete geodesic flows, noncommutative integrability, canonical transformations
Mots-clés : quadratic matrix equations, billiards.
@article{TM_2020_310_a12,
     author = {Bo\v{z}idar Jovanovi\'c and Yuri N. Fedorov},
     title = {Discrete {Geodesic} {Flows} on {Stiefel} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {176--188},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a12/}
}
TY  - JOUR
AU  - Božidar Jovanović
AU  - Yuri N. Fedorov
TI  - Discrete Geodesic Flows on Stiefel Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 176
EP  - 188
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a12/
LA  - ru
ID  - TM_2020_310_a12
ER  - 
%0 Journal Article
%A Božidar Jovanović
%A Yuri N. Fedorov
%T Discrete Geodesic Flows on Stiefel Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 176-188
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a12/
%G ru
%F TM_2020_310_a12
Božidar Jovanović; Yuri N. Fedorov. Discrete Geodesic Flows on Stiefel Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 176-188. http://geodesic.mathdoc.fr/item/TM_2020_310_a12/