Asymptotic Estimates for Singular Integrals of Fractions Whose Denominators Contain Products of Block Quadratic Forms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 161-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nontrivial upper bound is obtained for integrals over $\mathbb R^{dM}$ of ratios of the form $G(x)/\prod _{\alpha =1}^{\mathcal A} (Q_\alpha (x)+i\nu \Gamma _\alpha (x))$ with $\nu \to 0$, where $Q_\alpha $ are real quadratic forms composed of $d\times d$ blocks, $\Gamma _\alpha $ are real functions bounded away from zero, and $G$ is a function with sufficiently fast decay at infinity. Such integrals arise in wave turbulence theory; in particular, they play a key role in the recent papers by S. B. Kuksin and the author devoted to the rigorous study of the four-wave interaction. The analysis of these integrals reduces to the analysis of rapidly oscillating integrals whose phase function is quadratic in a part of variables and linear in the other part of variables and may be highly degenerate.
Keywords: } \thanks {This work is supported by the Russian Science Foundation under grant 19-71-30012.
@article{TM_2020_310_a11,
     author = {A. V. Dymov},
     title = {Asymptotic {Estimates} for {Singular} {Integrals} of {Fractions} {Whose} {Denominators} {Contain} {Products} of {Block} {Quadratic} {Forms}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a11/}
}
TY  - JOUR
AU  - A. V. Dymov
TI  - Asymptotic Estimates for Singular Integrals of Fractions Whose Denominators Contain Products of Block Quadratic Forms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 161
EP  - 175
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a11/
LA  - ru
ID  - TM_2020_310_a11
ER  - 
%0 Journal Article
%A A. V. Dymov
%T Asymptotic Estimates for Singular Integrals of Fractions Whose Denominators Contain Products of Block Quadratic Forms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 161-175
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a11/
%G ru
%F TM_2020_310_a11
A. V. Dymov. Asymptotic Estimates for Singular Integrals of Fractions Whose Denominators Contain Products of Block Quadratic Forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 161-175. http://geodesic.mathdoc.fr/item/TM_2020_310_a11/

[1] Buckmaster T., Germain P., Hani Z., Shatah J., Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation, E-print, 2019, arXiv: 1907.03667 [math.AP]

[2] Dimassi M., Sjöstrand J., Spectral asymptotics in the semi-classical limit, LMS Lect. Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[3] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 1: Kinetic limit, E-print, 2019, arXiv: 1907.04531 [math-ph]

[4] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 2: Method of diagram decomposition, E-print, 2019, arXiv: ; Dymov A., Kuksin S., On the Zakharov–L'vov stochastic model for wave turbulence, E-print, 2019, arXiv: 1907.02279 [math-ph]1907.05044 [math-ph]

[5] A. V. Dymov and S. B. Kuksin, “On the Zakharov–L'vov stochastic model for wave turbulence”, Dokl. Math., 101:2 (2020), 102–109 | DOI

[6] Hörmander L., The analysis of linear partial differential operators, v. I, Grundl. Math. Wiss., 256, Distribution theory and Fourier analysis, Springer, Berlin, 1983 | MR | Zbl

[7] Kuksin S., “Asymptotic expansions for some integrals of quotients with degenerated divisors”, Russ. J. Math. Phys., 24:4 (2017), 476–487 | DOI | MR | Zbl

[8] Kuksin S., “Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates”, J. Math. Phys. Anal. Geom., 14:4 (2018), 510–518 | MR | Zbl

[9] Lukkarinen J., Spohn H., “Weakly nonlinear Schrödinger equation with random initial data”, Invent. math., 183:1 (2011), 79–188 | DOI | MR | Zbl

[10] Nazarenko S., Wave turbulence, Lect. Notes Phys., 825, Springer, Berlin, 2011 | DOI | MR | Zbl

[11] Newell A.C., Rumpf B., “Wave turbulence”, Annu. Rev. Fluid Mech., 43 (2011), 59–78 | DOI | MR | Zbl

[12] V. E. Zakharov and V. S. L'vov, “Statistical description of nonlinear wave fields”, Radiophys. Quantum Electron., 18:10 (1975), 1084–1097 | DOI | MR

[13] Zakharov V.E., L'vov V.S., Falkovich G., Kolmogorov spectra of turbulence, v. I, Wave turbulence, Springer, Berlin, 1992 | MR | Zbl