Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In slow–fast systems, fast variables change at a rate of the order of one, and slow variables, at a rate of the order of $\varepsilon \ll 1$. The system obtained for $\varepsilon =0$ is said to be frozen. If the frozen (fast) system has one degree of freedom, then in the region where the level curves of the frozen Hamiltonian are closed there exists an adiabatic invariant. A. Neishtadt showed that near a separatrix of the frozen system the adiabatic invariant exhibits quasirandom jumps of order $\varepsilon $. In this paper we partially extend Neishtadt's result to the multidimensional case. We show that if the frozen system has a hyperbolic critical point possessing several transverse homoclinics, then for small $\varepsilon $ there exist trajectories shadowing homoclinic chains. The slow variables evolve in a quasirandom way, shadowing trajectories of systems with Hamiltonians similar to adiabatic invariants. This paper extends the work of V. Gelfreich and D. Turaev, who considered similar phenomena away from critical points of the frozen Hamiltonian.
@article{TM_2020_310_a1,
     author = {Sergey V. Bolotin},
     title = {Local {Adiabatic} {Invariants} {Near} a {Homoclinic} {Set} of a {Slow--Fast} {Hamiltonian} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a1/}
}
TY  - JOUR
AU  - Sergey V. Bolotin
TI  - Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 19
EP  - 32
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a1/
LA  - ru
ID  - TM_2020_310_a1
ER  - 
%0 Journal Article
%A Sergey V. Bolotin
%T Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 19-32
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a1/
%G ru
%F TM_2020_310_a1
Sergey V. Bolotin. Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 19-32. http://geodesic.mathdoc.fr/item/TM_2020_310_a1/

[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, URSS, Moscow, 2002 | MR | Zbl

[2] Mathematical Aspects of Classical and Celestial Mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | Zbl

[3] Bernard P., Kaloshin V., Zhang K., “Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders”, Acta math., 217:1 (2016), 1–79 | DOI | MR | Zbl

[4] S. V. Bolotin, “Libration motions of natural dynamical systems”, Vestn. Mosk. Univ. Ser. 1: Mat., Mekh., 1978, no. 6, 72–77 | MR | Zbl

[5] Bolotin S., “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063 | DOI | MR | Zbl

[6] S. V. Bolotin, “Jumps of energy near a separatrix in slow–fast Hamiltonian systems”, Russ. Math. Surv., 73:4 (2018), 725–727 | DOI | MR | Zbl

[7] Bolotin S.V., “Jumps of energy near a homoclinic set of a slowly time dependent Hamiltonian system”, Regul. Chaotic Dyn., 24:6 (2019), 682–703 | DOI | MR | Zbl

[8] Bolotin S., Negrini P., “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 | DOI | MR | Zbl

[9] Bolotin S.V., Rabinowitz P.H., “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Diff. Eqns., 148:2 (1998), 364–387 | DOI | MR | Zbl

[10] S. V. Bolotin and D. V. Treschev, “The anti-integrable limit”, Russ. Math. Surv., 70:6 (2015), 975–1030 | DOI | MR | Zbl

[11] Brännström N., de Simone E., Gelfreich V., “Geometric shadowing in slow–fast Hamiltonian systems”, Nonlinearity, 23:5 (2010), 1169–1184 | DOI | MR | Zbl

[12] Delshams A., Gidea M., Roldán P., “Transition map and shadowing lemma for normally hyperbolic invariant manifolds”, Discrete Contin. Dyn. Syst., 33 (2013), 1089–1112 | DOI | MR | Zbl

[13] Delshams A., de la Llave R., Seara T.M., “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl

[14] Gelfreich V., Turaev D., “Unbounded energy growth in Hamiltonian systems with a slowly varying parameter”, Commun. Math. Phys., 283:3 (2008), 769–794 | DOI | MR | Zbl

[15] Gidea M., de la Llave R., “Perturbations of geodesic flows by recurrent dynamics”, J. Eur. Math. Soc., 19:3 (2017), 905–956 | DOI | MR | Zbl

[16] Kaloshin V., Zhang K., “Arnold diffusion for smooth convex systems of two and a half degrees of freedom”, Nonlinearity, 28:8 (2015), 2699–2720 | DOI | MR | Zbl

[17] V. V. Kozlov, “Calculus of variations in the large and classical mechanics”, Russ. Math. Surv., 40:2 (1985), 37–71 | DOI | MR | Zbl | Zbl

[18] Li X., Cheng C.-Q., “Connecting orbits of autonomous Lagrangian systems”, Nonlinearity, 23:1 (2010), 119–141 | DOI | MR | Zbl

[19] A. I. Neishtadt, “On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom”, J. Appl. Math. Mech., 51:5 (1987), 586–592 | DOI | MR

[20] Neishtadt A.I., Vasiliev A.A., Artemyev A.V., “Capture into resonance and escape from it in a forced nonlinear pendulum”, Regul. Chaotic Dyn., 18:6 (2013), 686–696 | DOI | MR | Zbl

[21] G. N. Piftankin and D. V. Treschev, “Separatrix maps in Hamiltonian systems”, Russ. Math. Surv., 62:2 (2007), 219–322 | DOI | MR | Zbl

[22] Shilnikov L.P., Turaev D.V., “Super-homoclinic orbits and multi-pulse homoclinic loops in Hamiltonian systems with discrete symmetries”, Regul. Chaotic Dyn., 2:3–4 (1997), 126–138 | MR | Zbl

[23] Treschev D., “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems”, Nonlinearity, 15:6 (2002), 2033–2052 | DOI | MR | Zbl

[24] Treschev D., “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757 | DOI | MR | Zbl

[25] Treschev D., Zybelevich O., Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl