Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a1, author = {Sergey V. Bolotin}, title = {Local {Adiabatic} {Invariants} {Near} a {Homoclinic} {Set} of a {Slow--Fast} {Hamiltonian} {System}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {19--32}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a1/} }
TY - JOUR AU - Sergey V. Bolotin TI - Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 19 EP - 32 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a1/ LA - ru ID - TM_2020_310_a1 ER -
Sergey V. Bolotin. Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 19-32. http://geodesic.mathdoc.fr/item/TM_2020_310_a1/
[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, URSS, Moscow, 2002 | MR | Zbl
[2] Mathematical Aspects of Classical and Celestial Mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | Zbl
[3] Bernard P., Kaloshin V., Zhang K., “Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders”, Acta math., 217:1 (2016), 1–79 | DOI | MR | Zbl
[4] S. V. Bolotin, “Libration motions of natural dynamical systems”, Vestn. Mosk. Univ. Ser. 1: Mat., Mekh., 1978, no. 6, 72–77 | MR | Zbl
[5] Bolotin S., “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063 | DOI | MR | Zbl
[6] S. V. Bolotin, “Jumps of energy near a separatrix in slow–fast Hamiltonian systems”, Russ. Math. Surv., 73:4 (2018), 725–727 | DOI | MR | Zbl
[7] Bolotin S.V., “Jumps of energy near a homoclinic set of a slowly time dependent Hamiltonian system”, Regul. Chaotic Dyn., 24:6 (2019), 682–703 | DOI | MR | Zbl
[8] Bolotin S., Negrini P., “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 | DOI | MR | Zbl
[9] Bolotin S.V., Rabinowitz P.H., “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Diff. Eqns., 148:2 (1998), 364–387 | DOI | MR | Zbl
[10] S. V. Bolotin and D. V. Treschev, “The anti-integrable limit”, Russ. Math. Surv., 70:6 (2015), 975–1030 | DOI | MR | Zbl
[11] Brännström N., de Simone E., Gelfreich V., “Geometric shadowing in slow–fast Hamiltonian systems”, Nonlinearity, 23:5 (2010), 1169–1184 | DOI | MR | Zbl
[12] Delshams A., Gidea M., Roldán P., “Transition map and shadowing lemma for normally hyperbolic invariant manifolds”, Discrete Contin. Dyn. Syst., 33 (2013), 1089–1112 | DOI | MR | Zbl
[13] Delshams A., de la Llave R., Seara T.M., “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl
[14] Gelfreich V., Turaev D., “Unbounded energy growth in Hamiltonian systems with a slowly varying parameter”, Commun. Math. Phys., 283:3 (2008), 769–794 | DOI | MR | Zbl
[15] Gidea M., de la Llave R., “Perturbations of geodesic flows by recurrent dynamics”, J. Eur. Math. Soc., 19:3 (2017), 905–956 | DOI | MR | Zbl
[16] Kaloshin V., Zhang K., “Arnold diffusion for smooth convex systems of two and a half degrees of freedom”, Nonlinearity, 28:8 (2015), 2699–2720 | DOI | MR | Zbl
[17] V. V. Kozlov, “Calculus of variations in the large and classical mechanics”, Russ. Math. Surv., 40:2 (1985), 37–71 | DOI | MR | Zbl | Zbl
[18] Li X., Cheng C.-Q., “Connecting orbits of autonomous Lagrangian systems”, Nonlinearity, 23:1 (2010), 119–141 | DOI | MR | Zbl
[19] A. I. Neishtadt, “On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom”, J. Appl. Math. Mech., 51:5 (1987), 586–592 | DOI | MR
[20] Neishtadt A.I., Vasiliev A.A., Artemyev A.V., “Capture into resonance and escape from it in a forced nonlinear pendulum”, Regul. Chaotic Dyn., 18:6 (2013), 686–696 | DOI | MR | Zbl
[21] G. N. Piftankin and D. V. Treschev, “Separatrix maps in Hamiltonian systems”, Russ. Math. Surv., 62:2 (2007), 219–322 | DOI | MR | Zbl
[22] Shilnikov L.P., Turaev D.V., “Super-homoclinic orbits and multi-pulse homoclinic loops in Hamiltonian systems with discrete symmetries”, Regul. Chaotic Dyn., 2:3–4 (1997), 126–138 | MR | Zbl
[23] Treschev D., “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems”, Nonlinearity, 15:6 (2002), 2033–2052 | DOI | MR | Zbl
[24] Treschev D., “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757 | DOI | MR | Zbl
[25] Treschev D., Zybelevich O., Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl