Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_309_a7, author = {Yu. N. Drozhzhinov}, title = {On a {Problem} of {Multidimensional} {Tauberian} {Theory}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {110--119}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a7/} }
Yu. N. Drozhzhinov. On a Problem of Multidimensional Tauberian Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 110-119. http://geodesic.mathdoc.fr/item/TM_2020_309_a7/
[1] E. M. Čirka, “The theorems of Lindelöf and Fatou in $\mathbf C^n$”, Math. USSR, Sb., 21:4 (1973), 619–639 | MR
[2] Yu. N. Drozhzhinov, “A multidimensional Tauberian theorem for holomorphic functions of bounded argument and the quasi-asymptotics of passive systems”, Math. USSR, Sb., 45:1 (1983), 45–61 | MR | Zbl | Zbl
[3] Yu. N. Drozhzhinov and B. I. Zav'yalov, “Multidimensional Tauberian comparison theorems for holomorphic functions of bounded argument”, Math. USSR, Izv., 39:3 (1992), 1097–1112 | MR
[4] Yu. N. Drozhzhinov and B. I. Zav'yalov, “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164 | MR | Zbl
[5] Yu. N. Drozhzhinov and B. I. Zavyalov, “Applications of Tauberian theorems in some problems in mathematical physics”, Theor. Math. Phys., 157:3 (2008), 1678–1693 | MR | Zbl
[6] Loomis L.H., “The converse of the Fatou theorem for positive harmonic functions”, Trans. Amer. Math. Soc., 53 (1943), 239–250 | MR | Zbl
[7] E. Seneta, Regularly Varying Functions, Lect. Notes Math., 508, Springer, Berlin, 1976 | MR | Zbl
[8] Shapiro H.S., “Boundary values of bounded holomorphic functions of several variables”, Bull. Amer. Math. Soc., 77:1 (1977), 111–116 | MR
[9] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Nauka, Moscow, 1976 | MR
[10] Mir, Moscow, 1979 | MR
[11] V. S. Vladimirov, Yu. N. Drozhzhinov, and B. I. Zav'yalov, Multidimensional Tauberian Theorems for Generalized Functions, Nauka, Moscow, 1986 | MR | Zbl | Zbl
[12] Tauberian Theorems for Generalized Functions, Kluwer, Dordrecht, 1988 | MR | Zbl | Zbl
[13] A. L. Yakimiv, Probabilistic Applications of Tauberian Theorems, Fizmatlit, Moscow, 2005 | MR | Zbl