On a Problem of Multidimensional Tauberian Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 110-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In many Tauberian theorems, the asymptotic properties of functions were investigated with respect to a predefined function (usually in the scale of regularly varying functions). In this paper, we address an alternative problem: Given a generalized function, does it have asymptotics with respect to some regularly varying function? We find necessary and sufficient conditions for the existence of quasiasymptotics of those generalized functions whose Laplace transforms have a bounded argument in a tube domain over the positive orthant. Moreover, we point out a regularly varying function with respect to which quasiasymptotics exists. It turns out that the modulus of a holomorphic function in a tube domain over the positive orthant in the purely imaginary subspace on rays emanating from the origin behaves as a regularly varying function. We use the obtained results to find the quasiasymptotics of the generalized Cauchy problem for convolution equations whose kernels are passive operators.
Keywords: generalized functions, quasiasymptotics, Abelian and Tauberian theorems, regularly varying functions, holomorphic functions of bounded argument.
@article{TM_2020_309_a7,
     author = {Yu. N. Drozhzhinov},
     title = {On a {Problem} of {Multidimensional} {Tauberian} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {110--119},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a7/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
TI  - On a Problem of Multidimensional Tauberian Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 110
EP  - 119
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_309_a7/
LA  - ru
ID  - TM_2020_309_a7
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%T On a Problem of Multidimensional Tauberian Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 110-119
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_309_a7/
%G ru
%F TM_2020_309_a7
Yu. N. Drozhzhinov. On a Problem of Multidimensional Tauberian Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 110-119. http://geodesic.mathdoc.fr/item/TM_2020_309_a7/

[1] E. M. Čirka, “The theorems of Lindelöf and Fatou in $\mathbf C^n$”, Math. USSR, Sb., 21:4 (1973), 619–639 | MR

[2] Yu. N. Drozhzhinov, “A multidimensional Tauberian theorem for holomorphic functions of bounded argument and the quasi-asymptotics of passive systems”, Math. USSR, Sb., 45:1 (1983), 45–61 | MR | Zbl | Zbl

[3] Yu. N. Drozhzhinov and B. I. Zav'yalov, “Multidimensional Tauberian comparison theorems for holomorphic functions of bounded argument”, Math. USSR, Izv., 39:3 (1992), 1097–1112 | MR

[4] Yu. N. Drozhzhinov and B. I. Zav'yalov, “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164 | MR | Zbl

[5] Yu. N. Drozhzhinov and B. I. Zavyalov, “Applications of Tauberian theorems in some problems in mathematical physics”, Theor. Math. Phys., 157:3 (2008), 1678–1693 | MR | Zbl

[6] Loomis L.H., “The converse of the Fatou theorem for positive harmonic functions”, Trans. Amer. Math. Soc., 53 (1943), 239–250 | MR | Zbl

[7] E. Seneta, Regularly Varying Functions, Lect. Notes Math., 508, Springer, Berlin, 1976 | MR | Zbl

[8] Shapiro H.S., “Boundary values of bounded holomorphic functions of several variables”, Bull. Amer. Math. Soc., 77:1 (1977), 111–116 | MR

[9] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Nauka, Moscow, 1976 | MR

[10] Mir, Moscow, 1979 | MR

[11] V. S. Vladimirov, Yu. N. Drozhzhinov, and B. I. Zav'yalov, Multidimensional Tauberian Theorems for Generalized Functions, Nauka, Moscow, 1986 | MR | Zbl | Zbl

[12] Tauberian Theorems for Generalized Functions, Kluwer, Dordrecht, 1988 | MR | Zbl | Zbl

[13] A. L. Yakimiv, Probabilistic Applications of Tauberian Theorems, Fizmatlit, Moscow, 2005 | MR | Zbl

[14] VSP, Leiden, 2005 | MR | Zbl