Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 99-109
Voir la notice de l'article provenant de la source Math-Net.Ru
We recall the fat-graph description of Riemann surfaces $\Sigma _{g,s,n}$ and the corresponding Teichmüller spaces $\mathfrak T_{g,s,n}$ with $s>0$ holes and $n>0$ bordered cusps in the hyperbolic geometry setting. If $n>0$, we have a bijection between the set of Thurston shear coordinates and Penner's $\lambda $-lengths. Then we can define, on the one hand, a Poisson bracket on $\lambda $‑lengths that is induced by the Poisson bracket on shear coordinates introduced by V. V. Fock in 1997 and, on the other hand, a symplectic structure $\Omega_\mathrm{WP}$ on the set of extended shear coordinates that is induced by Penner's symplectic structure on $\lambda $-lengths. We derive the symplectic structure $\Omega_\mathrm{WP}$, which turns out to be similar to Kontsevich's symplectic structure for $\psi $-classes in complex analytic geometry, and demonstrate that it is indeed inverse to Fock's Poisson structure.
@article{TM_2020_309_a6,
author = {Leonid O. Chekhov},
title = {Symplectic {Structures} on {Teichm\"uller} {Spaces} $\mathfrak T_{g,s,n}$ and {Cluster} {Algebras}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {99--109},
publisher = {mathdoc},
volume = {309},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a6/}
}
TY - JOUR
AU - Leonid O. Chekhov
TI - Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2020
SP - 99
EP - 109
VL - 309
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a6/
LA - ru
ID - TM_2020_309_a6
ER -
Leonid O. Chekhov. Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 99-109. http://geodesic.mathdoc.fr/item/TM_2020_309_a6/