Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_309_a6, author = {Leonid O. Chekhov}, title = {Symplectic {Structures} on {Teichm\"uller} {Spaces} $\mathfrak T_{g,s,n}$ and {Cluster} {Algebras}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {99--109}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a6/} }
TY - JOUR AU - Leonid O. Chekhov TI - Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 99 EP - 109 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a6/ LA - ru ID - TM_2020_309_a6 ER -
Leonid O. Chekhov. Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 99-109. http://geodesic.mathdoc.fr/item/TM_2020_309_a6/
[1] Alekseev A.Yu., Malkin A.Z., “Symplectic structure of the moduli space of flat connection on a Riemann surface”, Commun. Math. Phys., 169:1 (1995), 99–119 | MR | Zbl
[2] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195:2 (2005), 405–455 ; arXiv: math/0404446 | MR | Zbl
[3] Bertola M., Korotkin D., Extended Goldman symplectic structure in Fock–Goncharov coordinates, E-print, 2019, arXiv: 1910.06744
[4] Bonahon F., “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse. Math. Sér. 6, 5:2 (1996), 233–297 | MR | Zbl
[5] Chekhov L., Mazzocco M., Colliding holes in Riemann surfaces and quantum cluster algebras, E-print, 2015, arXiv: 1509.07044 | MR
[6] Chekhov L.O., Mazzocco M., Rubtsov V.N., “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not., 2017:24 (2017), 7639–7691 | MR | Zbl
[7] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014:10 (2014), 2746–2772 ; arXiv: 1111.3963 | MR | Zbl
[8] Faddeev L.D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254 | MR | Zbl
[9] Fock V.V., Description of moduli space of projective structures via fat graphs, E-print, 1993, arXiv: hep-th/9312193 | Zbl
[10] Fock V.V., Dual Teichmüller spaces, E-print, 1997, arXiv: ; arXiv: dg-ga/9702018v3math/9908165
[11] V. V. Fock and L. O. Chekhov, “A quantum Techmüller space”, Theor. Math. Phys., 120:3 (1999), 1245–1259 | MR | Zbl
[12] V. V. Fock and L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163 | MR | Zbl
[13] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. math. Inst. hautes étud. sci., 103 (2006), 1–211 ; arXiv: math/0311149v4 | MR | Zbl
[14] Fock V.V., Rosly A.A., “Moduli space of flat connections as a Poisson manifold”, Int. J. Mod. Phys. B, 11:26–27 (1997), 3195–3206 | MR | Zbl
[15] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. Part I: Cluster complexes”, Acta math., 201:1 (2008), 83–146 | MR | Zbl
[16] Fomin S., Thurston D., Cluster algebras and triangulated surfaces. Part II: Lambda lengths, Mem. AMS, 255, N 1223, Amer. Math. Soc., Providence, RI, 2018 ; arXiv: 1210.5569 | MR
[17] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | MR | Zbl
[18] Fomin S., Zelevinsky A., “Cluster algebras. II: Finite type classification”, Invent. math., 154:1 (2003), 63–121 | MR | Zbl
[19] Goldman W.M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. math., 85:2 (1986), 263–302 | MR | Zbl
[20] Kashaev R.M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115 ; arXiv: q-alg/9705021 | MR | Zbl
[21] Musiker G., Schiffler R., Williams L., “Positivity for cluster algebras from surfaces”, Adv. Math., 227:6 (2011), 2241–2308 | MR | Zbl
[22] Musiker G., Williams L., “Matrix formulae and skein relations for cluster algebras from surfaces”, Int. Math. Res. Not., 2013:13 (2013), 2891–2944 | MR | Zbl
[23] Papadopoulos A., Penner R.C., “The Weil–Petersson symplectic structure at Thurston's boundary”, Trans. Amer. Math. Soc., 335:2 (1993), 891–904 | MR | Zbl
[24] Penner R.C., “The decorated Teichmüller space of punctured surfaces”, Commun. Math. Phys., 113:2 (1987), 299–339 | MR | Zbl
[25] Penner R.C., “Weil–Petersson volumes”, J. Diff. Geom., 35:3 (1992), 559–608 | MR | Zbl
[26] Thurston W.P., Minimal stretch maps between hyperbolic surfaces, E-print, 1998, arXiv: math/9801039