Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_309_a20, author = {K. V. Stepanyantz}, title = {The {Higher} {Covariant} {Derivative} {Regularization} as a {Tool} for {Revealing} the {Structure} of {Quantum} {Corrections} in {Supersymmetric} {Gauge} {Theories}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {304--319}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a20/} }
TY - JOUR AU - K. V. Stepanyantz TI - The Higher Covariant Derivative Regularization as a Tool for Revealing the Structure of Quantum Corrections in Supersymmetric Gauge Theories JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 304 EP - 319 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a20/ LA - ru ID - TM_2020_309_a20 ER -
%0 Journal Article %A K. V. Stepanyantz %T The Higher Covariant Derivative Regularization as a Tool for Revealing the Structure of Quantum Corrections in Supersymmetric Gauge Theories %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 304-319 %V 309 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_309_a20/ %G ru %F TM_2020_309_a20
K. V. Stepanyantz. The Higher Covariant Derivative Regularization as a Tool for Revealing the Structure of Quantum Corrections in Supersymmetric Gauge Theories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 304-319. http://geodesic.mathdoc.fr/item/TM_2020_309_a20/
[1] Abbott L.F., “The background field method beyond one loop”, Nucl. Phys. B, 185:1 (1981), 189–203 | MR
[2] Abbott L.F., “Introduction to the background field method”, Acta phys. Polon. B, 13:1–2 (1982), 33–50 | MR
[3] Aleshin S.S., Goriachuk I.O., Kataev A.L., Stepanyantz K.V., “The NSVZ scheme for $\mathcal N=1$ SQED with $N_f$ flavors, regularized by the dimensional reduction, in the three-loop approximation”, Phys. Lett. B, 764 (2017), 222–227 | MR | Zbl
[4] S. S. Aleshin, A. L. Kataev, and K. V. Stepanyantz, “Structure of three-loop contributions to the $\beta $-function of $\mathcal N=1$ supersymmetric QED with $N_\textup f$ flavors regularized by the dimensional reduction”, JETP Lett., 103:2 (2016), 77–81
[5] Aleshin S.S., Kataev A.L., Stepanyantz K.V., “The three-loop Adler $D$-function for $\mathcal N=1$ SQCD regularized by dimensional reduction”, J. High Energy Phys., 2019:03 (2019), 196 | MR | Zbl
[6] Aleshin S.S., Kazantsev A.E., Skoptsov M.B., Stepanyantz K.V., “One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization”, J. High Energy Phys., 2016:05 (2016), 014 | MR
[7] Ashmore J.F., “A method of gauge-invariant regularization”, Lett. Nuovo Cimento, 4:8 (1972), 289–290
[8] Avdeev L.V., Chochia G.A., Vladimirov A.A., “On the scope of supersymmetric dimensional regularization”, Phys. Lett. B, 105:4 (1981), 272–274
[9] Avdeev L.V., Kazakov D.I., Kondrashuk I.N., “Renormalizations in softly broken SUSY gauge theories”, Nucl. Phys. B, 510:1–2 (1998), 289–312 | MR | Zbl
[10] Avdeev L.V., Vladimirov A.A., “Dimensional regularization and supersymmetry”, Nucl. Phys. B, 219:1 (1983), 262–276
[11] Bardeen W.A., Buras A.J., Duke D.W., Muta T., “Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories”, Phys. Rev. D, 18:11 (1978), 3998–4017
[12] Becchi C., Rouet A., Stora R., “Renormalization of the abelian Higgs–Kibble model”, Commun. Math. Phys., 42:2 (1975), 127–162 | MR
[13] Bollini C.G., Giambiagi J.J., “Dimensional renormalization: The number of dimensions as a regularizing parameter”, Nuovo Cimento B, 12:1 (1972), 20–26
[14] Brink L., Lindgren O., Nilsson B.E.W., “$N=4$ Yang–Mills theory on the light cone”, Nucl. Phys. B, 212:3 (1983), 401–412
[15] Buchbinder I.L., Kuzenko S.M., Ideas and methods of supersymmetry and supergravity, or a walk through superspace, Inst. Phys., Bristol, 1998 | MR | Zbl
[16] Buchbinder I.L., Kuzenko S.M., Ovrut B.A., “On the $D=4$, $N=2$ non-renormalization theorem”, Phys. Lett. B, 433:3–4 (1998), 335–345
[17] Buchbinder I.L., Pletnev N.G., Stepanyantz K.V., “Manifestly $\mathcal N=2$ supersymmetric regularization for $\mathcal N=2$ supersymmetric field theories”, Phys. Lett. B, 751 (2015), 434–441
[18] Buchbinder I.L., Stepanyantz K.V., “The higher derivative regularization and quantum corrections in $\mathcal N=2$ supersymmetric theories”, Nucl. Phys. B, 883 (2014), 20–44 | MR | Zbl
[19] Capri M.A.L., Granado D.R., Guimaraes M.S., Justo I.F., Mihaila L., Sorella S.P., Vercauteren D., “Renormalization aspects of $\mathcal N=1$ super Yang–Mills theory in the Wess–Zumino gauge”, Eur. Phys. J. C, 74:4 (2014), 2844
[20] Cicuta G.M., Montaldi E., “Analytic renormalization via continuous space dimension”, Lett. Nuovo Cimento, 4:9 (1972), 329–332
[21] Delbourgo R., Prasad V.B., “Supersymmetry in the four-dimensional limit”, J. Phys. G, 1:4 (1975), 377–380
[22] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York, 1965 | MR
[23] Dudal D., Verschelde H., Sorella S.P., “The anomalous dimension of the composite operator $A^2$ in the Landau gauge”, Phys. Lett. B, 555:1–2 (2003), 126–131 | MR | Zbl
[24] Galperin A., Ivanov E., Kalitzin S., Ogievetsky V., Sokatchev E., “Unconstrained $N=2$ matter, Yang–Mills and supergravity theories in harmonic superspace”, Classical Quantum Gravity, 1:5 (1984), 469–498 ; “Corrigendum”, Classical Quantum Gravity, 2:1 (1985), 127 | MR | MR
[25] Galperin A.S., Ivanov E.A., Ogievetsky V.I., Sokatchev E.S., Harmonic superspace, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[26] Gates S.J., \textup {Jr.}, Grisaru M.T., Roček M., Siegel W., Superspace: One thousand and one lessons in supersymmetry, Front. Phys., 58, Benjamin/Cummings, Reading, MA, 1983 | MR
[27] Goriachuk I.O., Kataev A.L., Stepanyantz K.V., “A class of the NSVZ renormalization schemes for $\mathcal N=1$ SQED”, Phys. Lett. B, 785 (2018), 561–566 | Zbl
[28] Grisaru M.T., Siegel W., “Supergraphity. II: Manifestly covariant rules and higher-loop finiteness”, Nucl. Phys. B, 201:2 (1982), 292–314
[29] Harlander R.V., Jones D.R.T., Kant P., Mihaila L., Steinhauser M., “Four-loop $\beta $ function and mass anomalous dimension in dimensional reduction”, J. High Energy Phys., 2006:12 (2006), 024 | MR | Zbl
[30] Hisano J., Shifman M., “Exact results for soft supersymmetry-breaking parameters in supersymmetric gauge theories”, Phys. Rev. D, 56:9 (1997), 5475–5482 | MR
[31] Howe P.S., Stelle K.S., Townsend P.K., “Miraculous ultraviolet cancellations in supersymmetry made manifest”, Nucl. Phys. B, 236:1 (1984), 125–166 | MR
[32] Jack I., Jones D.R.T., “The gaugino $\beta $-function”, Phys. Lett. B, 415:4 (1997), 383–389
[33] Jack I., Jones D.R.T., North C.G., “$N=1$ supersymmetry and the three-loop gauge $\beta $-function”, Phys. Lett. B, 386:1–4 (1996), 138–140 | MR
[34] Jack I., Jones D.R.T., North C.G., “Scheme dependence and the NSVZ $\beta $-function”, Nucl. Phys. B, 486:1–2 (1997), 479–499
[35] Jack I., Jones D.R.T., Pickering A., “The connection between the DRED and NSVZ renormalisation schemes”, Phys. Lett. B, 435:1–2 (1998), 61–66 | MR
[36] Jones D.R.T., “Asymptotic behaviour of supersymmetric Yang–Mills theories in the two-loop approximation”, Nucl. Phys. B, 87:1 (1975), 127–132
[37] Jones D.R.T., “More on the axial anomaly in supersymmetric Yang–Mills theory”, Phys. Lett. B, 123:1–2 (1983), 45–46 | MR
[38] Juer J.W., Storey D., “Nonlinear renormalisation in superfield gauge theories”, Phys. Lett. B, 119:1–3 (1982), 125–127
[39] Juer J.W., Storey D., “One-loop renormalisation of superfield Yang–Mills theories”, Nucl. Phys. B, 216:1 (1983), 185–208
[40] Kataev A.L., Kazantsev A.E., Stepanyantz K.V., “The Adler $D$-function for $\mathcal N=1$ SQCD regularized by higher covariant derivatives in the three-loop approximation”, Nucl. Phys. B, 926 (2018), 295–320 | MR | Zbl
[41] Kataev A.L., Kazantsev A.E., Stepanyantz K.V., “On-shell renormalization scheme for $\mathcal N=1$ SQED and the NSVZ relation”, Eur. Phys. J. C, 79:6 (2019), 477
[42] Kataev A.L., Stepanyantz K.V., “NSVZ scheme with the higher derivative regularization for $\mathcal N=1$ SQED”, Nucl. Phys. B, 875:2 (2013), 459–482 | MR | Zbl
[43] Kataev A.L., Stepanyantz K.V., “Scheme independent consequence of the NSVZ relation for $\mathcal N=1$ SQED with $N_f$ flavors”, Phys. Lett. B, 730 (2014), 184–189 | Zbl
[44] A. L. Kataev and K. V. Stepanyantz, “The NSVZ $\beta $-function in supersymmetric theories with different regularizations and renormalization prescriptions”, Theor. Math. Phys., 181:3 (2014), 1531–1540 | MR | Zbl
[45] Kazantsev A.E., Kuzmichev M.D., Meshcheriakov N.P., Novgorodtsev S.V., Shirokov I.E., Skoptsov M.B., Stepanyantz K.V., “Two-loop renormalization of the Faddeev–Popov ghosts in $\mathcal N=1$ supersymmetric gauge theories regularized by higher derivatives”, J. High Energy Phys., 2018:06 (2018), 020 | MR
[46] Kazantsev A.E., Shakhmanov V.Yu., Stepanyantz K.V., “New form of the exact NSVZ $\beta $-function: The three-loop verification for terms containing Yukawa couplings”, J. High Energy Phys., 2018:04 (2018), 130 | MR | Zbl
[47] Kazantsev A.E., Skoptsov M.B., Stepanyantz K.V., “One-loop polarization operator of the quantum gauge superfield for $\mathcal N=1$ SYM regularized by higher derivatives”, Mod. Phys. Lett. A, 32:36 (2017), 1750194 | MR | Zbl
[48] A. E. Kazantsev and K. V. Stepanyantz, “Relation between two-point Green's functions of $\mathcal N=1$ SQED with $N_f$ flavors, regularized by higher derivatives, in the three-loop approximation”, J. Exp. Theor. Phys., 120:4 (2015), 618–631
[49] V. K. Krivoshchekov, “Invariant regularization for supersymmetric gauge theories”, Theor. Math. Phys., 36:3 (1978), 745–752 | MR
[50] Kuzmichev M.D., Meshcheriakov N.P., Novgorodtsev S.V., Shirokov I.E., Stepanyantz K.V., “Three-loop contribution of the Faddeev–Popov ghosts to the $\beta $-function of $\mathcal N=1$ supersymmetric gauge theories and the NSVZ relation”, Eur. Phys. J. C, 79:9 (2019), 809
[51] Mandelstam S., “Light-cone superspace and the ultraviolet finiteness of the $N=4$ model”, Nucl. Phys. B, 213:1 (1983), 149–168 | MR
[52] Mihaila L., “Precision calculations in supersymmetric theories”, Adv. High Energy Phys., 2013 (2013), 607807 | MR | Zbl
[53] Mohapatra R.N., Unification and supersymmetry: The frontiers of quark–lepton physics, Springer, New York, 2003 | MR
[54] Nartsev I.V., Stepanyantz K.V., “Exact renormalization of the photino mass in softly broken $\mathcal N=1$ SQED with $N_f$ flavors regularized by higher derivatives”, J. High Energy Phys., 2017:04 (2017), 047 | MR
[55] I. V. Nartsev and K. V. Stepanyantz, “NSVZ-like scheme for the photino mass in softly broken $\mathcal N=1$ SQED regularized by higher derivatives”, JETP Lett., 105:2 (2017), 69–73
[56] Novikov V.A., Shifman M.A., Vainshtein A.I., Zakharov V.I., “Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus”, Nucl. Phys. B, 229:2 (1983), 381–393 | MR
[57] Novikov V.A., Shifman M.A., Vainshtein A.I., Zakharov V.I., “The beta function in supersymmetric gauge theories. Instantons versus traditional approach”, Phys. Lett. B, 166:3 (1986), 329–333 | MR
[58] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, CRC Press, Boca Raton, FL, 2018 | MR
[59] Piguet O., Sibold K., “Renormalization of $N=1$ supersymmetric Yang–Mills theories. I: The classical theory”, Nucl. Phys. B, 197:2 (1982), 257–271
[60] Piguet O., Sibold K., “Renormalization of $N=1$ supersymmetric Yang–Mills theories. II: The radiative corrections”, Nucl. Phys. B, 197:2 (1982), 272–289
[61] Pimenov A.B., Shevtsova E.S., Stepanyantz K.V., “Calculation of two-loop $\beta $-function for general $N=1$ supersymmetric Yang–Mills theory with the higher covariant derivative regularization”, Phys. Lett. B, 686:4–5 (2010), 293–297 | MR
[62] Shakhmanov V.Yu., Stepanyantz K.V., “Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization”, Nucl. Phys. B, 920 (2017), 345–367 | MR | Zbl
[63] Shakhmanov V.Yu., Stepanyantz K.V., “New form of the NSVZ relation at the two-loop level”, Phys. Lett. B, 776 (2018), 417–423 | MR | Zbl
[64] Shifman M., Stepanyantz K., “Exact Adler function in supersymmetric QCD”, Phys. Rev. Lett., 114:5 (2015), 051601
[65] Shifman M.A., Stepanyantz K.V., “Derivation of the exact expression for the $D$ function in $\mathcal N=1$ SQCD”, Phys. Rev. D, 91:10 (2015), 105008 | MR
[66] Shifman M.A., Vainshtein A.I., “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion”, Nucl. Phys. B, 277 (1986), 456–486 | MR
[67] Shifman M.A., Vainshtein A.I., Zakharov V.I., “An exact relation for the Gell-Mann–Low function in supersymmetric electrodynamics”, Phys. Lett. B, 166:3 (1986), 334–336
[68] Siegel W., “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84:2 (1979), 193–196 | MR
[69] Siegel W., “Inconsistency of supersymmetric dimensional regularization”, Phys. Lett. B, 94:1 (1980), 37–40 | MR
[70] Slavnov A.A., “Invariant regularization of non-linear chiral theories”, Nucl. Phys. B, 31:2 (1971), 301–315 | MR
[71] A. A. Slavnov, “Ward identities in gauge theories”, Theor. Math. Phys., 10:2 (1972), 99–104
[72] A. A. Slavnov, “Invariant regularization of gauge theories”, Theor. Math. Phys., 13:2 (1972), 1064–1066
[73] A. A. Slavnov, “Pauli–Villars regularization for non-Abelian gauge theories”, Theor. Math. Phys., 33:2 (1977), 977–981 | MR
[74] Slavnov A.A., “Universal gauge invariant renormalization”, Phys. Lett. B, 518:1–2 (2001), 195–200 | Zbl
[75] A. A. Slavnov, “Regularization-independent gauge-invariant renormalization of the Yang–Mills theory”, Theor. Math. Phys., 130:1 (2002), 1–10 | Zbl
[76] A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields, Nauka, Moscow, 1988 | MR | MR | Zbl | Zbl
[77] L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Front. Phys., 83, Addison-Wesley, Redwood City, CA, 1991 | MR | MR | Zbl | Zbl
[78] A. A. Slavnov and K. V. Stepanyantz, “Universal invariant renormalization for supersymmetric theories”, Theor. Math. Phys., 135:2 (2003), 673–684 | Zbl
[79] A. A. Slavnov and K. V. Stepanyantz, “Universal invariant renormalization for the supersymmetric Yang–Mills theory”, Theor. Math. Phys., 139:2 (2004), 599–608 | Zbl
[80] Smilga A., Vainshtein A., “Background field calculations and nonrenormalization theorems in 4d supersymmetric gauge theories and their low-dimensional descendants”, Nucl. Phys. B, 704:3 (2005), 445–474 | MR | Zbl
[81] A. A. Soloshenko and K. V. Stepanyantz, “Three-loop $\beta $-function of $N=1$ supersymmetric electrodynamics regularized by higher derivatives”, Theor. Math. Phys., 140:3 (2004), 1264–1282 | Zbl
[82] Stepanyantz K.V., “Derivation of the exact NSVZ $\beta $-function in $N=1$ SQED, regularized by higher derivatives, by direct summation of Feynman diagrams”, Nucl. Phys. B, 852:1 (2011), 71–107 | MR | Zbl
[83] K. V. Stepanyantz, “Higher covariant derivative regularization for calculations in supersymmetric theories”, Proc. Steklov Inst. Math., 272 (2011), 256–265 | MR | Zbl
[84] Stepanyantz K.V., “Quantum corrections in $N=1$ supersymmetric theories with cubic superpotential, regularized by higher covariant derivatives”, Phys. Part. Nucl. Lett., 8 (2011), 321–324 | MR
[85] Stepanyantz K.V., Factorization of integrals defining the two-loop $\beta $-function for the general renormalizable $N=1$ SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives, E-print, 2011, arXiv: 1108.1491
[86] Stepanyantz K.V., “The NSVZ $\beta $-function and the Schwinger–Dyson equations for $\mathcal N=1$ SQED with $N_f$ flavors, regularized by higher derivatives”, J. High Energy Phys., 2014:08 (2014), 096
[87] Stepanyantz K.V., “Non-renormalization of the $V\bar cc$-vertices in $\mathcal N=1$ supersymmetric theories”, Nucl. Phys. B, 909 (2016), 316–335 | MR | Zbl
[88] Stepanyantz K.V., “Structure of quantum corrections in $\mathcal N=1$ supersymmetric gauge theories”, What comes beyond the standard models, Proc. 20th Workshop (Bled, 2017), Bled Workshops Phys., 18, no. 2, DMFA, Ljubljana, 2017, 197–213
[89] Stepanyantz K.V., “The $\beta $-function of $\mathcal N=1$ supersymmetric gauge theories regularized by higher covariant derivatives as an integral of double total derivatives”, J. High Energy Phys., 2019:10 (2019), 011 | MR
[90] Taylor J.C., “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33:2 (1971), 436–444 | MR
[91] 'T Hooft G., Veltman M., “Regularization and renormalization of gauge fields”, Nucl. Phys. B, 44:1 (1972), 189–213 | MR
[92] I. V. Tyutin, “Renormalization of supergauge theories with unextended supersymmetry”, Sov. J. Nucl. Phys., 37 (1983), 453–458 | MR | Zbl
[93] Tyutin I.V., Gauge invariance in field theory and statistical physics in operator formalism, E-print, 2008, arXiv: 0812.0580
[94] A. I. Vaĭnshteĭn and M. A. Shifman, “Solution of the problem of anomalies in supersymmetric gauge theories, and the operator expansion”, Sov. Phys. JETP, 64:3 (1986), 428–440 | MR
[95] A. I. Vaĭnshteĭn, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, “The Gell-Mann–Low function in supersymmetric gauge theories. Instantons versus the traditional approach”, Sov. J. Nucl. Phys., 43:2 (1986), 294–296 | MR
[96] A. I. Vaĭnshteĭn, V. I. Zakharov, and M. A. Shifman, “Gell-Mann–Low function in supersymmetric electrodynamics”, JETP Lett., 42:4 (1985), 224–227
[97] West P., “Higher derivative regulation of supersymmetric theories”, Nucl. Phys. B, 268:1 (1986), 113–124 | MR
[98] P. West, Introduction to Supersymmetry and Supergravity, World Scientific, Singapore, 1990 | MR | Zbl