Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 38-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a Hamiltonian structure for the $N$-particle hyperbolic spin Ruijsenaars–Schneider model by means of Poisson reduction of a suitable initial phase space. This phase space is realised as the direct product of the Heisenberg double of a factorisable Lie group with another symplectic manifold that is a certain deformation of the standard canonical relations for $N\ell $ conjugate pairs of dynamical variables. We show that the model enjoys the Poisson–Lie symmetry of the spin group $\mathrm {GL}_{\ell }(\mathbb C)$, which explains its superintegrability. Our results are obtained in the formalism of the classical $r$-matrix, and they are compatible with the recent findings on the different Hamiltonian structure of the model established in the framework of the quasi-Hamiltonian reduction applied to a quasi-Poisson manifold.
@article{TM_2020_309_a2,
     author = {Gleb E. Arutyunov and Enrico Olivucci},
     title = {Hyperbolic {Spin} {Ruijsenaars--Schneider} {Model} from {Poisson} {Reduction}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {38--53},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a2/}
}
TY  - JOUR
AU  - Gleb E. Arutyunov
AU  - Enrico Olivucci
TI  - Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 38
EP  - 53
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_309_a2/
LA  - ru
ID  - TM_2020_309_a2
ER  - 
%0 Journal Article
%A Gleb E. Arutyunov
%A Enrico Olivucci
%T Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 38-53
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_309_a2/
%G ru
%F TM_2020_309_a2
Gleb E. Arutyunov; Enrico Olivucci. Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 38-53. http://geodesic.mathdoc.fr/item/TM_2020_309_a2/

[1] Arutyunov G., Elements of classical and quantum integrable systems, Springer, Cham, 2019 | MR | Zbl

[2] Arutyunov G.E., Chekhov L.O., Frolov S.A., “$R$-matrix quantization of the elliptic Ruijsenaars–Schneider model”, Commun. Math. Phys., 192:2 (1998), 405–432 | MR | Zbl

[3] Arutyunov G.E., Frolov S.A., “Quantum dynamical R-matrices and quantum Frobenius group”, Commun. Math. Phys., 191:1 (1998), 15–29 ; arXiv: q-alg/9610009 | MR | Zbl

[4] Arutyunov G.E., Frolov S.A., “On the Hamiltonian structure of the spin Ruijsenaars–Schneider model”, J. Phys. A: Math. Gen., 31:18 (1998), 4203–4216 ; arXiv: hep-th/9703119 | MR | Zbl

[5] Arutyunov G.E., Frolov S.A., Medvedev P.B., “Elliptic Ruijsenaars–Schneider model via the Poisson reduction of the affine Heisenberg double”, J. Phys. A: Math. Gen., 30:14 (1997), 5051–5063 ; arXiv: hep-th/9607170 | MR | Zbl

[6] Arutyunov G.E., Frolov S.A., Medvedev P.B., “Elliptic Ruijsenaars–Schneider model from the cotangent bundle over the two-dimensional current group”, J. Math. Phys., 38:11 (1997), 5682–5689 ; arXiv: hep-th/9608013 | MR | Zbl

[7] Arutyunov G., Klabbers R., Olivucci E., “Quantum trace formulae for the integrals of the hyperbolic Ruijsenaars–Schneider model”, J. High Energy Phys., 2019:05 (2019), 069 ; arXiv: 1902.06755 | MR

[8] Chalykh O., Fairon M., “Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models”, J. Geom. Phys., 121 (2017), 413–437 ; arXiv: 1704.05814 | MR | Zbl

[9] Chalykh O., Fairon M., On the Hamiltonian formulation of the trigonometric spin Ruijsenaars–Schneider system, E-print, 2018, arXiv: 1811.08727

[10] Fairon M., Spin versions of the complex trigonometric Ruijsenaars–Schneider model from cyclic quivers, E-print, 2018, arXiv: 1811.08717 | MR

[11] Fehér L., Poisson–Lie analogues of spin Sutherland models, E-print, 2018, arXiv: 1809.01529 | MR

[12] Fehér L., Görbe T.F., “The full phase space of a model in the Calogero–Ruijsenaars family”, J. Geom. Phys., 115 (2017), 139–149 ; arXiv: 1603.02877 | MR | Zbl

[13] Fehér L., Klimčík C., “Poisson–Lie generalization of the Kazhdan–Kostant–Sternberg reduction”, Lett. Math. Phys., 87:1–2 (2009), 125–138 ; arXiv: 0809.1509 | MR | Zbl

[14] Fehér L., Klimčík C., “Poisson–Lie interpretation of trigonometric Ruijsenaars duality”, Commun. Math. Phys., 301:1 (2011), 55–104 ; arXiv: 0906.4198 | MR | Zbl

[15] Flaschka H., Ratiu T., “A convexity theorem for Poisson actions of compact Lie groups”, Ann. sci. Éc. norm. supér. Ser. 4, 29:6 (1996), 787–809 | MR | Zbl

[16] Gorsky A., Nekrasov N., “Relativistic Calogero–Moser model as gauged WZW theory”, Nucl. Phys. B, 436:3 (1995), 582–608 ; arXiv: hep-th/9401017 | MR | Zbl

[17] Gorsky A., Nekrasov N., Elliptic Calogero–Moser system from two dimensional current algebra, E-print, 1994, arXiv: hep-th/9401021 | Zbl

[18] Kazhdan D., Kostant B., Sternberg S., “Hamiltonian group actions and dynamical systems of Calogero type”, Commun. Pure Appl. Math., 31:4 (1978), 481–507 ; arXiv: hep-th/9505039 | MR | Zbl

[19] I. Krichever and A. Zabrodin, “Spin generalization of the Ruijsenaars–Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra”, Russ. Math. Surv., 50:6 (1995), 1101–1150 | MR | Zbl

[20] Reshetikhin N., “Degenerately integrable systems”, Zap. nauch. sem. POMI, 433 (2015), 224–245 ; arXiv: ; N. Reshetikhin, “Degenerately integrable systems”, J. Math. Sci., 213:5 (2016), 769–785 ; Zap. Nauchn. Semin. POMI, 433 (2015), 224–245; E-print, arXiv: 1509.007301509.00730 | MR | Zbl

[21] Ruijsenaars S.N.M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | MR | Zbl

[22] Ruijsenaars S.N.M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170:2 (1986), 370–405 | MR | Zbl

[23] Semenov-Tian-Shansky M.A., “Dressing transformations and Poisson group actions”, Publ. Res. Inst. Math. Sci., 21:6 (1985), 1237–1260 | MR