Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 38-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive a Hamiltonian structure for the $N$-particle hyperbolic spin Ruijsenaars–Schneider model by means of Poisson reduction of a suitable initial phase space. This phase space is realised as the direct product of the Heisenberg double of a factorisable Lie group with another symplectic manifold that is a certain deformation of the standard canonical relations for $N\ell $ conjugate pairs of dynamical variables. We show that the model enjoys the Poisson–Lie symmetry of the spin group $\mathrm {GL}_{\ell }(\mathbb C)$, which explains its superintegrability. Our results are obtained in the formalism of the classical $r$-matrix, and they are compatible with the recent findings on the different Hamiltonian structure of the model established in the framework of the quasi-Hamiltonian reduction applied to a quasi-Poisson manifold.
@article{TM_2020_309_a2,
author = {Gleb E. Arutyunov and Enrico Olivucci},
title = {Hyperbolic {Spin} {Ruijsenaars--Schneider} {Model} from {Poisson} {Reduction}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {38--53},
publisher = {mathdoc},
volume = {309},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a2/}
}
TY - JOUR AU - Gleb E. Arutyunov AU - Enrico Olivucci TI - Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 38 EP - 53 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a2/ LA - ru ID - TM_2020_309_a2 ER -
Gleb E. Arutyunov; Enrico Olivucci. Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 38-53. http://geodesic.mathdoc.fr/item/TM_2020_309_a2/